
18 - Efficient Complementation of Elevator Automata
Barbora Šmahlíková
Supervisor: Ing. Ondřej Lengál, Ph.D., Consultant: Ing. Vojtěch Havlena, Ph.D.Published at TACAS’22

18 - Efficient Complementation of Elevator Automata
Barbora Šmahlíková
Supervisor: Ing. Ondřej Lengál, Ph.D., Consultant: Ing. Vojtěch Havlena, Ph.D.Published at TACAS’22

Büchi Automata

p q r
a

a
a

b

Büchi automaton (BA) accepting infinitewords starting with symbol a, followedby a finite number of symbol a and aninfinite sequence of symbols ab

A = (Q,Σ, δ, I, F) with• a finite set of statesQ,
• an alphabet Σ,
• a transition function δ:Q× Σ → 2Q,
• a set of initial states I ⊆ Q, and
• a set of accepting states F ⊆ Q.Automata over infinite words accepted by loopingover some accepting states infinitely often

Elevator Automata
• Large class of Büchi automata occuring often in practice
• Each strongly connected component (SCC) is of one of the following types:

– deterministic,
– inherently weak accepting (accepting state on every cycle),
– nonaccepting (with no accepting state).

• Can be complemented more efficiently than general Büchi automata thanks totheir specific structure

p q r

IWAN

a

a
a

b

An example of elevator automaton withone nonaccepting (N) and one inherentlyweak accepting (IWA) SCC

Complementing Büchi Automata
Büchi automata complementation is a crucial operation for decision procedures ofvarious logics, such as the monadic second-order logic S1S or temporal logics ETL andQPTL, aswell as for language inclusion, equivalence testing, model checking of tempo-ral properties, or termination analysis of programs. Due to the high space complexityof BA complementation, many different approaches and optimizations have been in-troduced since the original construction by Büchi was presented in the 1960s. Thetheoretical lower bound of BA complementation is (0.76n)n.

Rank-based Complementation
Our algorithm is based on the so-called rank-based complementation approach andit follows Schewe’s asymptotically optimal complementation algorithm. Even thoughthe algorithm is asymptotically optimal, it can still generate a lot of unnecessary statesand transitions. It is therefore desirable to reduce the generated state space as muchas possible.For a given Büchi automaton A = (Q,Σ, δ, I, F), a level ranking is a function
f :Q{0, 1, . . . , 2|Q|} such that {f (qf) | qf ∈ F} ⊆ {0, 2, . . . , 2|Q|}, i.e., f mapsall accepting states of A to even ranks. Given a set of states S ⊆ Q, a (level) rank-ing f :Q{0, 1, . . . , 2|Q|} is called S-tight if it has an odd rank r, {f (s) | s ∈ S} ⊇
{1, 3, . . . , r}, and {f (q) | q ̸∈ S} = {0}. A ranking is tight if it isQ-tight.The number of successors of a given state in the complement corresponds to the num-ber of possible tight rankings, which depends on the factorial of maximum rank. Forgeneral BAs, maximum rank for every currently reachable state can be bounded to
2|Q| − 1. Thanks to the structure of elevator BAs, we can, however, set the bound onthe maximum rank more specifically for each state, and thus reduce the number ofsuccessors and the generated state space. In the automaton below, which is a com-plement of the BA shown in the previous pictures, out of 7 possible successors of state
{p, q, r}, only one is generated. The red states and their successors are not generatedat all, because they have higher rank than the bound we can get from our algorithm.

{p}

∅

{p, q} {p, q, r}

{q}

{r}

({p:1, q:2, r:3}, ∅)

({p:1, q:0, r:3}, ∅)

({p:3, q:2, r:1}, ∅)

({p:3, q:0, r:1}, ∅)

({p:1, q:0, r:1}, ∅)

({p:0, q:0, r:1}, ∅)
({p:1, q:0, r:0}, ∅)

({p:1, q:0, r:0}, {q, r}) ({p:1, q:0, r:0}, {r})

a

b b

a

a, b

a

b

b
a

a
b

a

a

a

a

a

Elevator Rules
We can assign type and maximum rank for states in each SCC of an elevator automa-ton. For terminal SCCs, we assign type IWA and rank 0 to inherently weak acceptingSCCs and type D and rank 2 otherwise. For non-terminal SCCs, we use the rules shownbelow. We can assign the type and rank to an SCC only if they were already assignedto all its successors. Children nodes denote already processed successive SCCs. In par-ticular, a child node of the form k:ℓk denotes an aggregate of all siblings of the type kwith ℓk being themaximum rank of these siblings. The symbols 2 and 2 are interpetedas 0 if all the corresponding edges from the components having rank ℓD and ℓW , re-spectively, are deterministic; otherwise they are interpreted as 2. Transitions betweentwo componentsC1 andC2 are deterministic if there are either transitions only to thesame SCC or only to other SCCs for a given state and symbol. If there are more op-tions, we use the one with lower rank bound.

IWA:`

` = max{`D, `N + 1, `W }
C:

D:`D N:`N IWA:`W

D:`

` = max{`D + 2 , `N + 1, `W + 2 , 2}
C:

D:`D

2

N:`N IWA:`W

2

N:`

` = max{`D + 1, `N , `W + 1}
C:

D:`D N:`N IWA:`W

p q r

IWA:0N:1

a

a
a

b Elevator automaton with assigned typesand ranks for states in each SCC.
This algorithm can also be extended to general BAs containing at least one determin-istic, nonaccepting or inherently weak accepting SCC.

Experiments
The optimization for complementing elevator automata was implemented as an ex-tension of the tool RANKER in C++. We used two datasets for our experiments: ran-domwith randomly generated BAs over a two letter alphabet, and LTL with automataover larger alphabets (up to 128 symbols) obtained from LTL formulae. Our benchmarkcontains 2592 random and 414 LTL BAs. Of all 3006 BAs, 458 were elevator automata.The following scatterplots show comparison with other state-of-the-art tools for BAcomplementation. Blue data points are from random and red from LTL. Axes are log-arithmic.
Rank-based complementationWe compared RANKER with other rank-based procedures, namely with Schewe’scomplementation algorithm, and with the previous version of RANKER (denoted asRANKER-OLD). For many automata, the improvement was exponential in both cases.

10 100 1000 10000 100000
Ranker

10

100

1000

10000

100000

Sc
he

we

10 100 1000 10000 100000
Ranker

10

100

1000

10000

100000

Ra
nk

er
Ol

d

Other approachesWe also compared RANKER with other state-of-the-art tools with different comple-mentation approaches, namely GOAL, SPOT, SEMINATOR 2, LTL2DSTAR and ROLL. Thescatterplots below show comparison of RANKER with two most competitive tools -SPOT and ROLL. SPOT behaves slightly better on BAs from LTL, but especially for ran-dom BAs, RANKER gives a smaller BA in the majority of cases.

1 10 100 1000
Ranker

1

10

100

1000

Sp
ot

1 10 100 1000
Ranker

1

10

100

1000

RO
LL

Comparison with other state-of-the-art toolsThe table below shows comparison of RANKER with other state-of-the-art tools. Thevalues are given for three datasets as all (random : LTL). RANKER gives more wins thanlosses in comparison with any other tool (i.e., it produces strictly smaller BA moreoften than a BA with more states).
method mean median wins losses mean runtime [s] median runtime [s] timeouts

Ranker 3812 (4452 : 207) 79 (93 : 26) 7.83 (8.99 : 1.30) 0.51 (0.84 : 0.04) 279 (276 : 3)
RankerOld 7398 (8688 : 358) 141 (197 : 29) 2190 (2011 : 179) 111 (107 : 4) 9.37 (10.73 : 1.99) 0.61 (1.04 : 0.04) 365 (360 : 5)
Schewe 4550 (5495 : 665) 439 (774 : 35) 2640 (2315 : 325) 55 (1 : 54) 21.05 (24.28 : 7.80) 6.57 (7.39 : 5.21) 937 (928 : 9)

Ranker 47 (52 : 18) 22 (27 : 10) 7.83 (8.99 : 1.30) 0.51 (0.84 : 0.04) 279 (276 : 3)
Piterman 73 (82 : 22) 28 (34 : 14) 1435 (1124 : 311) 416 (360 : 56) 7.29 (7.39 : 6.65) 5.99 (6.04 : 5.62) 14 (12 : 2)
Safra 83 (91 : 30) 29 (35 : 17) 1562 (1211 : 351) 387 (350 : 37) 14.11 (15.05 : 8.37) 6.71 (6.92 : 5.79) 172 (158 : 14)
Spot 75 (85 : 15) 24 (32 : 10) 1087 (936 : 151) 683 (501 : 182) 0.86 (0.99 : 0.06) 0.02 (0.02 : 0.02) 13 (13 : 0)
Fribourg 91 (104 : 13) 23 (31 : 9) 1120 (1055 : 65) 601 (376 : 225) 17.79 (19.53 : 7.22) 9.25 (10.15 : 5.48) 81 (80 : 1)
LTL2dstar 73 (82 : 21) 28 (34 : 13) 1465 (1195 : 270) 465 (383 : 82) 3.31 (3.84 : 0.11) 0.04 (0.05 : 0.02) 136 (130 : 6)
Seminator 2 79 (91 : 15) 21 (29 : 10) 1266 (1131 : 135) 571 (367 : 204) 9.51 (11.25 : 0.08) 0.22 (0.39 : 0.02) 363 (362 : 1)
Roll 18 (19 : 14) 10 (9 : 11) 2116 (1858 : 258) 569 (443 : 126) 31.23 (37.85 : 7.28) 8.19 (12.23 : 2.74) 1109 (1106 : 3)

