
http://excel.fit.vutbr.cz

Dynamic Mesh network in Micropython on ESP32
Jindřich Šesták

N1

N4N2 N3

Connected Mode N1

N4N2 N3

StandAlone Mode

Abstract
The aim of this project is to implement a mesh network protocol on ESP32 microchips in MicroPython.
It mainly focuses on the functioning of mesh in two modes, with connection to the Internet and
without it. This thesis was ordered by Espressif company for improving and discovering new ways
of mesh networking. The solution of this mesh network uses two network protocols. First, the
ESP-NOW protocol offers low power consumption and doesn’t need any network connection. The
second is the common WiFi protocol which is used for data transmission. WiFi links are formed
between ESP32 nodes and one of the nodes can even be connected to the Internet and offer a
connection to the whole mesh. With full functionality, the mesh should be light weighted and will
connect multiple nodes. It is possible to run user applications like light control on ESP32 boards
on top of the mesh using WiFi. With WiFi, it is possible to transfer up to 1500 Bytes of data for
applications. The work is still in progress. In this project, there are designed new innovations to
ensure the formation of a structure in the mesh. The problem of how to select a root node in an
environment without the WiFi Access Point (Router, AP) is presented.

Keywords: ESP32 — ESP-NOW — Mesh network — Mesh — Espressif — MicroPython — Asyncio

Supplementary Material: MicroPython ESP32 Mesh — ESP-WIFI-MESH video — Github ESP32
ESP-NOW

*xsesta05@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction1

The motivation for this project is to develop an easy2

mesh network. MicroPython programming language is3

very popular and it is expected that the programming4

community will have interest in this project for use5

in homes. Existing solutions are not versatile enough,6

they often offer mesh networks only in environments7

with WiFi AP or only without it. This work aims to8

develop a universal solution mainly for home use for9

IT enthusiasts and hobbyist.10

The assignment from the company specifies use11

of MicroPython as the company aims to meet the pos-12

sibilities and limitations of MicroPython on ESP3213

boards. MicroPython should offer easier reprogram-14

ming and additions for more specific use-cases. It is 15

also required to use proprietary ESP-NOW protocol. 16

Because ESP-NOW protocol is currently supported 17

only on ESP8266 and ESP32 microchips, the develop- 18

ment aims only for ESP32 boards and portability on 19

different platform is not currently possible. 20

A Mesh network is a network in which every node 21

communicates with each other. This can be achieved 22

either by flooding the messages through broadcast or 23

by unicast routing. Solutions should be automatic and 24

self-organising, meaning that mesh will form its con- 25

nection without prior configuration. Dynamic mesh 26

networks should be able to act on changes in the mesh. 27

Meaning the addition of nodes in the existing mesh is 28

http://excel.fit.vutbr.cz
https://github.com/SestakJ/DP/tree/develop
https://www.youtube.com/watch?v=8JaK2W0avr0
https://github.com/glenn20/micropython/tree/espnow-g20/ports/esp32
https://github.com/glenn20/micropython/tree/espnow-g20/ports/esp32
mailto:xsesta05@stud.fit.vutbr.cz

possible and the mesh will reorganise on node failures,29

which is called self-healing. A Mesh network that30

routes the traffic needs a root node, which manages the31

mesh and is often connected to the Internet.32

Right now, there are three mesh network solutions33

working on microcontrollers ESP32 [1]. First, ESP34

Bluetooth Low Energy Mesh is based on Bluetooth35

technology. In this mesh, nodes are connected to as36

many as they possibly can. The mesh is without any37

structure and uses flooding as the only way of transmit-38

ting messages. PainlessMesh is a library in C language39

that offers small and fast deployment of the mesh using40

a WiFi interface. Nodes form a structure therefore this41

mesh is not fully connected therefore routing to reduce42

the number of packets is used. The third solution is43

ESP-WIFI-MESH, which also uses a WiFi interface in44

mesh and routes packets. This solution is more reliable45

and faster. These solutions are described in detail in46

section 2.47

Our solution uses a combination of two technolo-48

gies. ESP-NOW protocol [2] is used to collect informa-49

tion about nodes in the mesh. Prior to WiFi connection50

and transmitting of data, the mesh is formed based on51

the collected information from ESP-NOW. The mesh52

requires a root node. After the root node is elected, it53

manages and directs the further forming of the mesh.54

In the process of formation, nodes connect to each55

other through mentioned WiFi. Node is connected to56

only a subset of nodes it sees and the aim is to form57

connections with nodes with the best signal.58

This project brings another solution in mesh net-59

works using affordable ESP32 microcontrollers. With60

the use of MicroPython, it aims to become more popu-61

lar for community projects and spread to more users.62

A new way of forming the mesh is presented. Addi-63

tionally, this solution can work either with connection64

to the Internet or without it, while there is no need for65

manual reconfiguration. The mesh is formed without66

any prior setup except key credentials.67

2. Previous works68

Programmers from Espressif company have already69

been working on mesh networks using ESP32 micro-70

controllers and they have come up with three official71

solutions.72

The ESP Bluetooth Low Energy MESH [3][4] is73

optimised for large scale networks. Bluetooth stan-74

dard offers connectivity to many different devices with75

different Bluetooth versions. The use of Bluetooth in-76

terface keeps the WiFi Station interface free to connect77

to the WiFi AP, however, they cannot be Access Points78

themselves. This means that the node can be part of the79

Station

Access Point

Station

Access Point

Station

Access Point

Station

Access Point

Station

Access Point

Figure 1. ESP32 microcontroller has two independent
WiFi interfaces. Nodes can combine these two
interface to create network structure or hierarchy.

mesh while still being connected to the Internet, while 80

the mesh as a whole is not connected. The mesh is not 81

structured and there is no root node and messages are 82

broadcasted to everyone. A special node called Relays 83

can forward and broadcast messages further to the dis- 84

tant nodes. There is a need of provisioning the node 85

with the credentials, which is done by smartphone with 86

a mobile application. The provisioning is needed to 87

perform on each node. 88

The PainlessMesh library [5] written in C++ pro- 89

vides an easy solution for small mesh network projects. 90

It uses both WiFi interfaces, Access Point and Station 91

mode. Nodes can connect to other nodes’ Access Point 92

interface while still acting as Access Point for other 93

nodes as shown in figure 1, therefore creating a star 94

or tree-like structure. It is ensured that there are no 95

loops in the structure. Nodes exchange topology in- 96

formation with each other hence every node knows 97

the whole topology. All nodes are equal in this mesh 98

and have the same information. As nodes connect to 99

the Access Point interface with the best RSSI signal 100

there is no need for the root node, but it is allowed 101

and recommended to manually set the root in the mesh. 102

Not setting the root node can lead to a bad topology 103

and can lead to the creation of several small and iso- 104

lated meshes like in figure 2. However, PainlessMesh 105

cannot form a connection to the outside network like 106

the Internet, because it is not known which node is to 107

become the first node that has no upstream connection 108

and therefore it is not known which node has a free 109

Station interface. Messages are in JSON format for 110

better human readability and clarity. 111

The third solution is the ESP-WIFI-MESH [6] 112

project built on top of WiFi protocol while nodes use 113

A

D

E
C

B

Figure 2. PainlessMesh with automatic root election
can cause inconvenience mesh topology. It can lead to
creation of several independent meshes, which is not
desirable.

both WiFi interfaces same as in the PainlessMesh so-114

lution. But this solution requires the presence of WiFi115

AP in the range of at least one node because this pro-116

tocol is used to offer Internet connections for the re-117

mote nodes outside the range of WiFi AP. Based on118

the strength of the signal RSSI to the WiFi AP, the119

root node is selected or it can be set manually. Only120

the root is connected to the WiFi AP while it offers a121

WiFi connection to the other (child) nodes and thus122

enlarges the Internet connection to the other nodes.123

The mesh forms a tree structure in which nodes are not124

equal. Nodes higher in hierarchy knows more about125

the topology than the leaf nodes with the root node that126

knows the exact whole topology. Nodes use routing of127

messages, therefore, reducing the load on the network.128

Nodes connect to the parent nodes based on two con-129

ditions. Firstly node takes into consideration the depth130

of the possible parent and chooses the shallowest one,131

which reduces the depth of a tree. Secondly, it chooses132

parents with the fewest child nodes already connected,133

aiming to more balanced trees.134

3. Proposed Mesh network using ESP-
NOW and WiFi

135

The goal is to create one mesh protocol that can func-136

tion in two modes autonomously, connected to the137

WiFi AP and stand-alone without the Internet connec-138

tion. This versatile approach is lacking in existing139

solutions. As for any mesh network, it should im-140

plement self-healing and self-organising features for141

autonomous functioning.142

For a collection of information about nodes and143

for adding nodes into the mesh network, the propri-144

etary ESP-NOW protocol is used. This protocol is145

built on top of IEEE 802.11 Management Frames. For146

topology updates and application data transmitting, a147

common WiFi protocol is used. This means that for148

periodic messages the mesh uses low power protocol149

ESP-NOW and for bigger data transmitting the WiFi150

is used. With these two wireless protocols, the mesh151

uses both broadcast flooding in ESP-NOW and unicast152

routing for WiFi.153

New node

ADD_PEER(LMK)

Button pressed

Node in mesh

Button pressed
SYN

ADD_PEER(LMK)

SYN

SYN_ACK

REQUEST

RESPONSE(KEY)
DEL_PEER(LMK) DEL_PEER(LMK)

Broadcast
Unicast

Figure 3. Mesh Protected Setup (MPS) for
exchanging security key for message signing uses
broadcast for registering a peer. Secure key is
transfered via ciphered unicast. After this exchange
new node can participate in mesh.

For easy and not time demanding provisioning of 154

nodes, we proposed the Mesh Protected Setup (MPS) 155

method of adding nodes to already installed mesh. 156

There is still a need to manually set the key creden- 157

tials for message signing and encryption but only on 158

the first node. The addition of nodes to the mesh is 159

done by pressing the button on ESP32 boards. Using 160

handshake both new node and node with credentials 161

register each other with predefined LMK security key 162

for encryption in ESP-NOW protocol and securely ex- 163

change key credentials. They are registered only for 164

this exchange process due to the limit of registered 165

devices, therefore one node in mesh can one by one 166

send credentials all the other nodes. The message is 167

considered valid and accepted for further processing 168

if and only the HMAC [7] hash signed with received 169

key credentials matches. Otherwise, messages are 170

dropped. 171

Nodes with key credentials send periodic updates 172

through broadcast. Receiving nodes update their node 173

database and retransmit these advertisements. This 174

way nodes collect information about all the nodes with 175

credentials, ergo nodes in the mesh. If nodes didn’t 176

receive advertisements about certain nodes for some 177

amount of time, it considers him disconnected and 178

wipes out the record from the database. The ESP- 179

NOW protocol needs a WiFi interface to be active, 180

because of that nodes can see WiFi AP interfaces net- 181

works of other nodes. A node can compare these WiFi 182

networks it sees with his database of nodes and from 183

the subset where MAC addresses match it can compute 184

the strength of the signal to his neighbours. It also sees 185

the WiFi Access Point of the router with an Internet 186

connection and RSSI signal to it. Based on these two 187

values, the root is elected. The root is the one with the 188

best signal to WiFi AP router similar to the ESP-WIFI- 189

MESH solution mentioned earlier. But when there is190

no WiFi Access Point presented in the environment,191

it doesn’t take it into the account. Instead, it elects192

root based on the signal to its neighbours. We can193

assume, that this value represents the centrality of the194

node, how much in the centre of the mesh is it. A195

node that sees only one neighbour would not be a good196

root. Instead, a node most in the centre of the mesh is197

selected.198

After the root node is elected he became the moder-199

ator of the mesh. It sends to the close neighbours with200

good signal credentials and they connect to its WiFi201

AP interface, therefore becoming its child nodes. After202

that, the root node and the child node communicate203

via WiFi protocol while still advertising in ESP-NOW.204

Then the child nodes report to the root node about205

their close neighbours with a request to claim them206

as their child nodes. The root node collects these re-207

quests from all the child nodes and allows the node208

with the best connection to claim a new node as its209

own. In the same spirit, the formation of tree structure210

continues completing the process of self-organising.211

The root node also sends periodic topology updates212

to everyone in the structure, thus every node knows213

exactly where in topology it stands. When some node214

is detected inactive through the loss of its WiFi signal,215

it is considered a failed node. Every node in topology216

is informed about this fail down and descendants of217

this failed node can see that their connection is lost.218

They disconnect from it and wait for another node in219

topology to claim them, thus ensuring a self-healing220

process as can be seen in figure 4.221

4. Implementation with asyncio in Mi-
croPython222

The project is written in MicroPython port for ESP32223

devices according to assignment. MicroPython is an224

implementation of a Python3 programming language225

optimised to run on microcontrollers. Some of the core226

Python libraries are part of this language, but it also in-227

cludes modules that allow low-level hardware access to228

the programmer like library machine. For this project,229

the essential libraries are espnow for ESP-NOW pro-230

tocol operations and library network for directing and231

managing WiFi network interfaces.232

In MicroPython and Python, there are several ways233

to achieve concurrency computing, like multi-core par-234

allelism or threading. A new and more suitable way235

is using module asyncio [8]. In this implementation,236

coroutines (==tasks) are scheduled to run in an overlap-237

ping but non-blocking manner using cooperative multi-238

tasking on single-core processors, similar to threading.239

But the biggest advantage over threading is, that in 240

asyncio the programmer himself decides when and 241

where should one task yield its resources like CPU 242

to the other tasks. Furthermore, the task cannot be 243

interrupted in the middle of computing unless it wants 244

to, therefore there is no need to worry about locks, mu- 245

texes, race conditions and deadlocks, unlike threading. 246

Asynchronous event loop manages tasks and schedules 247

tasks to be run. 248

The project consists of several modules and sup- 249

porting files. Functionality is achieved by dividing 250

into two main cores. One core (espnowcore.py) man- 251

ages ESP-NOW protocol, processing of messages, ex- 252

change of credentials and root election. This core is ini- 253

tialised and executed within second core (wificore.py) 254

which takes care of WiFi messaging, tree topology 255

formation. 256

User can build application in which he initialises 257

WiFi core and run its start() function. This function 258

further invokes full functionality of mesh and both 259

ESP-NOW and WiFi cores. User has to define class 260

with at least two functions for his application. One for 261

sending or invoking application messages and one for 262

processing them (must be named exactly process()). 263

Application messages are in JSON predefined format 264

inside class AppMessage(srcMac, dstMac, message). 265

After startup of the node, the WiFi core start() 266

function must be called. It invokes ESP-NOW core 267

and waits. In ESP-NOW core advertisements and MPS 268

processes are executed. In MPS procedure it is allowed 269

for 45 seconds to send and process unsigned messages 270

only regarding MPS. After node receives credentials 271

for signing in MPS procedure, it can start processing 272

and sending all ESP-NOW messages. After 29 seconds 273

without any new advertisement additions to a database 274

of nodes, we assume all node are started and root 275

election can take place. 276

WiFi core waits for node to be a root (only one 277

node) or for node to receive AP credentials from his 278

parent node. In case of root node, he creates tree topol- 279

ogy. In case of received AP credentials, it connects 280

to parent ESP32 AP and creates socket connection to 281

parent node. After that node waits until he receives 282

tree topology update from parent node. The root node 283

doesn’t have to wait because he has the tree topology 284

which he previously created. Consequently, the node 285

configures its AP WiFi interface, open and listens on 286

socket for child nodes, this also invokes function for 287

claiming children which sends node’s randomly gen- 288

erated WiFi AP credentials (ssid, password) to child 289

nodes so they can connect to him. 290

Through socket connections root node sends topol- 291

N6

N10

N9
N7

N1

N3
N8

N5

N4
N2

Root

N11

Root elected
Firstl level
Second level
Third level
Dead Node

Figure 4. Without WiFi AP, root is the most central node. If some node breaks down, everyone is informed and
descendants nodes can be claimed by another node.

ogy updates to his child nodes and they send it to their292

child nodes and so on, so every node in the mesh has293

the tree topology. When nodes receives new connec-294

tion from child node, it reports change to the root node295

in order to actualise the tree topology. The same occurs296

when child node fails down. When parent node fails297

down the node must hard reset itself, because socket in-298

terface has problem with terminating and creating new299

socket on same port for different parent node. With300

hard reset the node automatically (must be defined in301

main.py) starts anew and can be claimed by some new302

parent.303

Messages in ESP-NOW protocol are packed with304

module struct into bytes to save space in the packet305

because ESP-NOW allows transmitting only 250 bytes306

in one message. On the other hand, WiFi packets are307

in JSON format for human readability and offer up to308

1500 bytes, which was inspired by Painlessmesh im-309

plementation. The JSON format is also better for rep-310

resenting the topology hierarchy in topology updates.311

User-defined application is to use WiFi communica-312

tion with predefined JSON format. Due to ESP-NOW313

protocol still not being officially supported in MicroPy-314

thon it is not recommended to change the behaviour of315

ESP-NOW part of the program.316

Periodic advertisement updates in ESP-NOW pro-317

tocol are send every 5 seconds, but updates from other318

nodes are retransmitted further to the mesh only every319

13 seconds to reduce the load in the network. The320

root node is elected after 29 seconds with no database321

changes with this equation:322

centrality = ∑
xi∈X

1√
|RSSIxi|

. (1)

WiFi topology updates are sent every 7 seconds.323

Time constants are selected experimentally in a hope324

that prime intervals are less likely to interfere with325

one another to cause network overload or overload in 326

processing the messages with limits of ESP32 boards. 327

For message signing the HMAC library together 328

with the SHA256 hash function is used. The digest is 329

inserted behind the message to verify the source of the 330

message belongs to the same mesh network. 331

Some critical tasks are run using try-exception 332

command and exceptions are catched. Severe excep- 333

tions lead to machine hard reset and start of the node 334

anew in order to overcome failed coroutines and unde- 335

fined behaviour of the node. 336

5. Limitations and Drawbacks 337

The LMK and PMK key for secure ESP-NOW com- 338

munication during MPS process of exchange signing 339

credential must be predefined in JSON configuration 340

file because these values has to be the same on both 341

devices. 342

WiFi AP of ESP32 boards support by default 4 343

nodes connected and can be improved up to 10 nodes 344

connected as child nodes. There can be by default 345

only 10 sockets open but this can be improved up to 346

32 sockets. Nevertheless, maximum number of child 347

nodes is 10 nodes. 348

WIFI AP and STA interface on ESP32 boards op- 349

erates on same WiFi channels. Therefore ESP-NOW 350

is on the same channel as well. This means that even 351

though there are several WiFi AP in the mesh, every- 352

one must operate on the same channel. When the mesh 353

is connected to the WiFi router, the mesh must be on 354

the same channel as WiFi router. According to the 355

standard 802.11g, the WiFi channel has speed up to 356

54 Mbps. Node periodically sends 52B of ESP-NOW 357

advertisements every 5 seconds and for every other 358

node also 52B every 13 seconds. Also 66B + 42B x 359

N of WiFi topology updates every 7 seconds are sent 360

to every child node, where N is count of node in the 361

mesh. The assignment defines at functionality on at362

least 10 (N=10) nodes in the mesh therefore the bit363

rate on the channel from all the nodes is as follows:364

rate = (52∗12+52∗N ∗4,6)∗N

+((66+42∗N)∗8,5)∗ (N −1)

rate = (624+239,2N)∗N +(561+257N)(N −1)

rate = 67339B∗8 = 538712bpm = 8978bps

This values represents traffic on the mesh during365

runtime after the mesh is settled and working.. In366

the equation, there is not counted with MPS protocol,367

exchange of WiFi AP credentials to child nodes and368

update of topology when tree is changed. Additional369

traffic will appear with user application.370

On ESP3232-Buddy which have been provided by371

the company for development, there is byd default 64372

KB of RAM available for MicroPython. The mesh373

takes about 50 KB of RAM. When importing a file374

in MicroPython it takes RAM memory in Heap and375

can lead to allocation errors. This can be overcome376

by pre-compiling files into .mpy files which reduces377

overhead while importing.378

Right now the root election is set statically be-379

cause there is a problem with WiFi scanning networks,380

which takes between 2 and 2,5 seconds. Even though381

in MicroPython WiFi scan is defined in another thread,382

in RTOS it runs in the same thread as receiving of383

incoming packets, therefore, it blocks the receiving.384

Currently there is an effort to reimplement MicroPy-385

thon port to be able to scan only one channel which386

would reduce blocking time to only 120 mili seconds.387

It would significantly reduce the number of dropped388

packets.389

Because the problem with the scanning, the claim-390

ing of the child nodes with best signal was changed.391

In advertisements messages there was added TTL flag.392

And node can claim only nodes within the range using393

TTL flag.394

After 29 seconds of no new addition through MPS395

into the mesh, the root is elected which takes some396

amount of time. Then at worst every 7 seconds new397

layer of child is added. In total 29+7*L seconds where398

L is the height of the tree. Be aware that connection399

to WiFi AP of parent node takes unknown amount of400

time.401

At the moment there haven’t been any power con-402

sumption measurements to know how long can device403

operate on battery, yet.404

6. Conclusions 405

This paper discusses mesh networks and peeks into 406

the existing solutions in mesh networking on ESP32 407

microcontrollers. The proposed new mesh network 408

protocol is presented and its main goal is to create an 409

independent mesh network in environments both with 410

and without WiFi AP presence. It uses a combina- 411

tion of ESP-NOW proprietary protocol with broadcast 412

communication and WiFi protocol which uses unicast. 413

The implementation uses MicroPython with asyn- 414

cio library. Asyncio allows programmers to implement 415

concurrency in the non-blocking state with a lower 416

overhead than threading. The programmer also de- 417

cides and directs switching between tasks as he wants. 418

Therefore asyncio supports asynchronous I/O opera- 419

tions like waiting for and reading packets. 420

Our solution invents a new way for the root node 421

election in environments without WiFi AP. Therefore 422

our mesh network has always a root node and creates 423

a tree structure of nodes in the mesh. 424

This project can be used as a base layer for IoT sys- 425

tems. Programmers can develop their own application 426

that will operate on top of the mesh communication. 427

Mesh uses only WiFi and there is no need for new 428

transmitting technology thus ESP32 are affordable and 429

ideal devices for home or small projects. But ESP32 430

are also very versatile and MicroPython allows the 431

creation of complex projects. There is a need to con- 432

figure a key for security and desired WiFi credentials 433

for connecting the mesh to the Internet. 434

This project can be improved by adding a configu- 435

ration layer in form of a simple HTTP server. Instead 436

of manually configuring mesh in program file or JSON 437

configuration file and uploading to the node, this web- 438

server would allow setting and manual configuration 439

during run time. 440

Acknowledgements 441

I would like to thank my supervisor Kamil Malinka 442

for his advice and guidance. Big thanks belong to 443

my technical supervisor Sergey Silnov from company 444

Espressif for his ideas and other useful input during 445

the development of this project. 446

References 447

[1] Systems Espressif. ESP32 Series Datasheet. 448

https://www.espressif.com/sites/ 449

default/files/documentation/ 450

esp32_datasheet_en.pdf. 451

[2] Systems Espressif. Esp-now. https://docs. 452

espressif.com/projects/esp-idf/ 453

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html

en/latest/esp32/api-reference/454

network/esp_now.html.455

[3] Systems Espressif. Esp-ble-mesh.456

https://docs.espressif.com/projects/esp-457

idf/en/latest/esp32/api-guides/esp-ble-mesh/ble-458

mesh-index.html.459

[4] Martin Woolley. Bluetooth Mesh networking,460

2020. Bluetooth SIG.461

[5] Edwin van Leeuwen Coopdis, Scotty Franzyshen.462

PainlessMesh. GitLab, 2019 [Online].463

https://gitlab.com/painlessMesh/464

painlessMesh/-/wikis/home.465

[6] Systems Espressif. Esp-wifi-mesh. https:466

//docs.espressif.com/projects/467

esp-idf/en/stable/esp32/468

api-guides/esp-wifi-mesh.html.469

[7] Hugo Krawczyk, Mihir Bellare, and Ran Canetti.470

Rfc2104: Hmac: Keyed-hashing for message au-471

thentication, 1997.472

[8] John Hunt. Concurrency with AsyncIO. Springer473

International Publishing, 2019. 407–417 p. ISBN474

978-3-030-25943-3.475

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://gitlab.com/painlessMesh/painlessMesh/-/wikis/home
https://gitlab.com/painlessMesh/painlessMesh/-/wikis/home
https://gitlab.com/painlessMesh/painlessMesh/-/wikis/home
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html

	Introduction
	Previous works
	Proposed Mesh network using ESP-NOW and WiFi
	Implementation with asyncio in MicroPython
	Limitations and Drawbacks
	Conclusions
	References

