BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Dynamic Mesh network in Micropython on ESP32
Jindfich Sestak

Connected Mode StandAlone Mode

Abstract

The aim of this project is to implement a mesh network protocol on ESP32 microchips in MicroPython.

It mainly focuses on the functioning of mesh in two modes, with connection to the Internet and
without it. This thesis was ordered by Espressif company for improving and discovering new ways
of mesh networking. The solution of this mesh network uses two network protocols. First, the
ESP-NOW protocol offers low power consumption and doesn’t need any network connection. The
second is the common WiFi protocol which is used for data transmission. WiFi links are formed
between ESP32 nodes and one of the nodes can even be connected to the Internet and offer a
connection to the whole mesh. With full functionality, the mesh should be light weighted and will
connect multiple nodes. It is possible to run user applications like light control on ESP32 boards
on top of the mesh using WiFi. With WiFi, it is possible to transfer up to 1500 Bytes of data for
applications. The work is still in progress. In this project, there are designed new innovations to
ensure the formation of a structure in the mesh. The problem of how to select a root node in an
environment without the WiFi Access Point (Router, AP) is presented.

Keywords: ESP32 — ESP-NOW — Mesh network — Mesh — Espressif — MicroPython — Asyncio
Supplementary Material: MicroPython ESP32 Mesh — ESP-WIFI-MESH video — Github ESP32

ESP-NOW

*xsesta05@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

The motivation for this project is to develop an easy
mesh network. MicroPython programming language is
very popular and it is expected that the programming
community will have interest in this project for use
in homes. Existing solutions are not versatile enough,
they often offer mesh networks only in environments
with WiFi AP or only without it. This work aims to
develop a universal solution mainly for home use for
IT enthusiasts and hobbyist.

The assignment from the company specifies use
of MicroPython as the company aims to meet the pos-
sibilities and limitations of MicroPython on ESP32
boards. MicroPython should offer easier reprogram-

ming and additions for more specific use-cases. It is
also required to use proprietary ESP-NOW protocol.
Because ESP-NOW protocol is currently supported
only on ESP8266 and ESP32 microchips, the develop-
ment aims only for ESP32 boards and portability on
different platform is not currently possible.

A Mesh network is a network in which every node
communicates with each other. This can be achieved
either by flooding the messages through broadcast or
by unicast routing. Solutions should be automatic and
self-organising, meaning that mesh will form its con-
nection without prior configuration. Dynamic mesh
networks should be able to act on changes in the mesh.
Meaning the addition of nodes in the existing mesh is

15

16

18

19

20

21

22

24
25
26
27
28

http://excel.fit.vutbr.cz
https://github.com/SestakJ/DP/tree/develop
https://www.youtube.com/watch?v=8JaK2W0avr0
https://github.com/glenn20/micropython/tree/espnow-g20/ports/esp32
https://github.com/glenn20/micropython/tree/espnow-g20/ports/esp32
mailto:xsesta05@stud.fit.vutbr.cz

possible and the mesh will reorganise on node failures,
which is called self-healing. A Mesh network that
routes the traffic needs a root node, which manages the
mesh and is often connected to the Internet.

Right now, there are three mesh network solutions
working on microcontrollers ESP32 [1]. First, ESP
Bluetooth Low Energy Mesh is based on Bluetooth
technology. In this mesh, nodes are connected to as
many as they possibly can. The mesh is without any
structure and uses flooding as the only way of transmit-
ting messages. PainlessMesh is a library in C language
that offers small and fast deployment of the mesh using
a WiFi interface. Nodes form a structure therefore this
mesh is not fully connected therefore routing to reduce
the number of packets is used. The third solution is
ESP-WIFI-MESH, which also uses a WiFi interface in
mesh and routes packets. This solution is more reliable
and faster. These solutions are described in detail in
section 2.

Our solution uses a combination of two technolo-
gies. ESP-NOW protocol [2] is used to collect informa-
tion about nodes in the mesh. Prior to WiFi connection
and transmitting of data, the mesh is formed based on
the collected information from ESP-NOW. The mesh
requires a root node. After the root node is elected, it
manages and directs the further forming of the mesh.
In the process of formation, nodes connect to each
other through mentioned WiFi. Node is connected to
only a subset of nodes it sees and the aim is to form
connections with nodes with the best signal.

This project brings another solution in mesh net-
works using affordable ESP32 microcontrollers. With
the use of MicroPython, it aims to become more popu-
lar for community projects and spread to more users.
A new way of forming the mesh is presented. Addi-
tionally, this solution can work either with connection
to the Internet or without it, while there is no need for
manual reconfiguration. The mesh is formed without
any prior setup except key credentials.

Programmers from Espressif company have already
been working on mesh networks using ESP32 micro-
controllers and they have come up with three official
solutions.

The ESP Bluetooth Low Energy MESH [3][4] is
optimised for large scale networks. Bluetooth stan-
dard offers connectivity to many different devices with
different Bluetooth versions. The use of Bluetooth in-
terface keeps the WiFi Station interface free to connect
to the WiFi AP, however, they cannot be Access Points
themselves. This means that the node can be part of the

Access Point
A A

\ 2 \ 2
| Station] | Station]

Access Point Access Point

Station Station
Access Point Access Point

Figure 1. ESP32 microcontroller has two independent
WiFi interfaces. Nodes can combine these two
interface to create network structure or hierarchy.

mesh while still being connected to the Internet, while
the mesh as a whole is not connected. The mesh is not
structured and there is no root node and messages are
broadcasted to everyone. A special node called Relays
can forward and broadcast messages further to the dis-
tant nodes. There is a need of provisioning the node
with the credentials, which is done by smartphone with
a mobile application. The provisioning is needed to
perform on each node.

The PainlessMesh library [5] written in C++ pro-
vides an easy solution for small mesh network projects.
It uses both WiFi interfaces, Access Point and Station
mode. Nodes can connect to other nodes’ Access Point
interface while still acting as Access Point for other
nodes as shown in figure 1, therefore creating a star
or tree-like structure. It is ensured that there are no
loops in the structure. Nodes exchange topology in-
formation with each other hence every node knows
the whole topology. All nodes are equal in this mesh
and have the same information. As nodes connect to
the Access Point interface with the best RSSI signal
there is no need for the root node, but it is allowed
and recommended to manually set the root in the mesh.
Not setting the root node can lead to a bad topology
and can lead to the creation of several small and iso-
lated meshes like in figure 2. However, PainlessMesh
cannot form a connection to the outside network like
the Internet, because it is not known which node is to
become the first node that has no upstream connection
and therefore it is not known which node has a free
Station interface. Messages are in JSON format for
better human readability and clarity.

The third solution is the ESP-WIFI-MESH [6]
project built on top of WiFi protocol while nodes use

135

136

TN
(E
__/

Figure 2. PainlessMesh with automatic root election
can cause inconvenience mesh topology. It can lead to
creation of several independent meshes, which is not
desirable.

both WiFi interfaces same as in the PainlessMesh so-
lution. But this solution requires the presence of WiFi
AP in the range of at least one node because this pro-
tocol is used to offer Internet connections for the re-
mote nodes outside the range of WiFi AP. Based on
the strength of the signal RSSI to the WiFi AP, the
root node is selected or it can be set manually. Only
the root is connected to the WiFi AP while it offers a
WiFi connection to the other (child) nodes and thus
enlarges the Internet connection to the other nodes.
The mesh forms a tree structure in which nodes are not
equal. Nodes higher in hierarchy knows more about
the topology than the leaf nodes with the root node that
knows the exact whole topology. Nodes use routing of
messages, therefore, reducing the load on the network.
Nodes connect to the parent nodes based on two con-
ditions. Firstly node takes into consideration the depth
of the possible parent and chooses the shallowest one,
which reduces the depth of a tree. Secondly, it chooses
parents with the fewest child nodes already connected,
aiming to more balanced trees.

The goal is to create one mesh protocol that can func-
tion in two modes autonomously, connected to the
WiFi AP and stand-alone without the Internet connec-
tion. This versatile approach is lacking in existing
solutions. As for any mesh network, it should im-
plement self-healing and self-organising features for
autonomous functioning.

For a collection of information about nodes and
for adding nodes into the mesh network, the propri-
etary ESP-NOW protocol is used. This protocol is
built on top of IEEE 802.11 Management Frames. For
topology updates and application data transmitting, a
common WiFi protocol is used. This means that for
periodic messages the mesh uses low power protocol
ESP-NOW and for bigger data transmitting the WiFi
is used. With these two wireless protocols, the mesh
uses both broadcast flooding in ESP-NOW and unicast
routing for WiFi.

New node Node in mesh
, SYN '
Button pressed N | Button pressed
»{ | ADD_PEER(LMK)
SYN_ACK
ADD_PEER(LMK) <
REQUEST -
>
_ RESPONSE(KEY)
DEL_PEER(LMK) B DEL_PEER(LMK)
' —Broadcast L

' — Unicast :

Figure 3. Mesh Protected Setup (MPS) for
exchanging security key for message signing uses
broadcast for registering a peer. Secure key is
transfered via ciphered unicast. After this exchange
new node can participate in mesh.

For easy and not time demanding provisioning of
nodes, we proposed the Mesh Protected Setup (MPS)
method of adding nodes to already installed mesh.
There is still a need to manually set the key creden-
tials for message signing and encryption but only on
the first node. The addition of nodes to the mesh is
done by pressing the button on ESP32 boards. Using
handshake both new node and node with credentials
register each other with predefined LMK security key
for encryption in ESP-NOW protocol and securely ex-
change key credentials. They are registered only for
this exchange process due to the limit of registered
devices, therefore one node in mesh can one by one
send credentials all the other nodes. The message is
considered valid and accepted for further processing
if and only the HMAC [7] hash signed with received
key credentials matches. Otherwise, messages are
dropped.

Nodes with key credentials send periodic updates
through broadcast. Receiving nodes update their node
database and retransmit these advertisements. This
way nodes collect information about all the nodes with
credentials, ergo nodes in the mesh. If nodes didn’t
receive advertisements about certain nodes for some
amount of time, it considers him disconnected and
wipes out the record from the database. The ESP-
NOW protocol needs a WiFi interface to be active,
because of that nodes can see WiFi AP interfaces net-
works of other nodes. A node can compare these WiFi
networks it sees with his database of nodes and from
the subset where MAC addresses match it can compute
the strength of the signal to his neighbours. It also sees
the WiFi Access Point of the router with an Internet
connection and RSSI signal to it. Based on these two
values, the root is elected. The root is the one with the
best signal to WiFi AP router similar to the ESP-WIFI-

154

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

MESH solution mentioned earlier. But when there is
no WiFi Access Point presented in the environment,
it doesn’t take it into the account. Instead, it elects
root based on the signal to its neighbours. We can
assume, that this value represents the centrality of the
node, how much in the centre of the mesh is it. A
node that sees only one neighbour would not be a good
root. Instead, a node most in the centre of the mesh is
selected.

After the root node is elected he became the moder-
ator of the mesh. It sends to the close neighbours with
good signal credentials and they connect to its WiFi
AP interface, therefore becoming its child nodes. After
that, the root node and the child node communicate
via WiFi protocol while still advertising in ESP-NOW.
Then the child nodes report to the root node about
their close neighbours with a request to claim them
as their child nodes. The root node collects these re-
quests from all the child nodes and allows the node
with the best connection to claim a new node as its
own. In the same spirit, the formation of tree structure
continues completing the process of self-organising.
The root node also sends periodic topology updates
to everyone in the structure, thus every node knows
exactly where in topology it stands. When some node
is detected inactive through the loss of its WiFi signal,
it is considered a failed node. Every node in topology
is informed about this fail down and descendants of
this failed node can see that their connection is lost.
They disconnect from it and wait for another node in
topology to claim them, thus ensuring a self-healing
process as can be seen in figure 4.

The project is written in MicroPython port for ESP32
devices according to assignment. MicroPython is an
implementation of a Python3 programming language
optimised to run on microcontrollers. Some of the core
Python libraries are part of this language, but it also in-
cludes modules that allow low-level hardware access to
the programmer like library machine. For this project,
the essential libraries are espnow for ESP-NOW pro-
tocol operations and library network for directing and
managing WiFi network interfaces.

In MicroPython and Python, there are several ways
to achieve concurrency computing, like multi-core par-
allelism or threading. A new and more suitable way
is using module asyncio [8]. In this implementation,
coroutines (==tasks) are scheduled to run in an overlap-
ping but non-blocking manner using cooperative multi-
tasking on single-core processors, similar to threading.

But the biggest advantage over threading is, that in
asyncio the programmer himself decides when and
where should one task yield its resources like CPU
to the other tasks. Furthermore, the task cannot be
interrupted in the middle of computing unless it wants

to, therefore there is no need to worry about locks, mu- 2

texes, race conditions and deadlocks, unlike threading.
Asynchronous event loop manages tasks and schedules
tasks to be run.

The project consists of several modules and sup-
porting files. Functionality is achieved by dividing

into two main cores. One core (espnowcore.py) man- 2

ages ESP-NOW protocol, processing of messages, ex-
change of credentials and root election. This core is ini-
tialised and executed within second core (wificore.py)
which takes care of WiFi messaging, tree topology
formation.

User can build application in which he initialises
WiFi core and run its start() function. This function
further invokes full functionality of mesh and both
ESP-NOW and WiFi cores. User has to define class
with at least two functions for his application. One for
sending or invoking application messages and one for
processing them (must be named exactly process()).
Application messages are in JSON predefined format
inside class AppMessage(srcMac, dstMac, message).

After startup of the node, the WiFi core start()
function must be called. It invokes ESP-NOW core
and waits. In ESP-NOW core advertisements and MPS
processes are executed. In MPS procedure it is allowed
for 45 seconds to send and process unsigned messages
only regarding MPS. After node receives credentials
for signing in MPS procedure, it can start processing
and sending all ESP-NOW messages. After 29 seconds
without any new advertisement additions to a database
of nodes, we assume all node are started and root
election can take place.

WiFi core waits for node to be a root (only one
node) or for node to receive AP credentials from his
parent node. In case of root node, he creates tree topol-
ogy. In case of received AP credentials, it connects
to parent ESP32 AP and creates socket connection to
parent node. After that node waits until he receives
tree topology update from parent node. The root node
doesn’t have to wait because he has the tree topology
which he previously created. Consequently, the node
configures its AP WiFi interface, open and listens on
socket for child nodes, this also invokes function for
claiming children which sends node’s randomly gen-
erated WiFi AP credentials (ssid, password) to child
nodes so they can connect to him.

Through socket connections root node sends topol-

288
289
290

291

319

Root elected
Firstl level
Second level
Third level
Dead Node

N7

Figure 4. Without WiFi AP, root is the most central node. If some node breaks down, everyone is informed and

descendants nodes can be claimed by another node.

ogy updates to his child nodes and they send it to their
child nodes and so on, so every node in the mesh has
the tree topology. When nodes receives new connec-
tion from child node, it reports change to the root node
in order to actualise the tree topology. The same occurs
when child node fails down. When parent node fails
down the node must hard reset itself, because socket in-
terface has problem with terminating and creating new
socket on same port for different parent node. With
hard reset the node automatically (must be defined in
main.py) starts anew and can be claimed by some new
parent.

Messages in ESP-NOW protocol are packed with
module struct into bytes to save space in the packet
because ESP-NOW allows transmitting only 250 bytes
in one message. On the other hand, WiFi packets are
in JSON format for human readability and offer up to
1500 bytes, which was inspired by Painlessmesh im-
plementation. The JSON format is also better for rep-
resenting the topology hierarchy in topology updates.
User-defined application is to use WiFi communica-
tion with predefined JSON format. Due to ESP-NOW
protocol still not being officially supported in MicroPy-
thon it is not recommended to change the behaviour of
ESP-NOW part of the program.

Periodic advertisement updates in ESP-NOW pro-
tocol are send every 5 seconds, but updates from other
nodes are retransmitted further to the mesh only every
13 seconds to reduce the load in the network. The
root node is elected after 29 seconds with no database
changes with this equation:

x;(\ /|RSSIx,

WiFi topology updates are sent every 7 seconds.
Time constants are selected experimentally in a hope
that prime intervals are less likely to interfere with

(1

centrality =

one another to cause network overload or overload in

processing the messages with limits of ESP32 boards. :
For message signing the HMAC library together :

with the SHA256 hash function is used. The digest is
inserted behind the message to verify the source of the
message belongs to the same mesh network.

Some critical tasks are run using try-exception

command and exceptions are catched. Severe excep- 33:

tions lead to machine hard reset and start of the node

anew in order to overcome failed coroutines and unde- 33:

fined behaviour of the node.

The LMK and PMK key for secure ESP-NOW com- 33

munication during MPS process of exchange signing
credential must be predefined in JSON configuration
file because these values has to be the same on both
devices.

WiFi AP of ESP32 boards support by default 4
nodes connected and can be improved up to 10 nodes
connected as child nodes. There can be by default
only 10 sockets open but this can be improved up to
32 sockets. Nevertheless, maximum number of child
nodes is 10 nodes.

WIFI AP and STA interface on ESP32 boards op- :
erates on same WiFi channels. Therefore ESP-NOW

1s on the same channel as well. This means that even

though there are several WiFi AP in the mesh, every- :

one must operate on the same channel. When the mesh
is connected to the WiFi router, the mesh must be on
the same channel as WiFi router. According to the
standard 802.11g, the WiFi channel has speed up to

54 Mbps. Node periodically sends 52B of ESP-NOW 35
advertisements every 5 seconds and for every other :

node also 52B every 13 seconds. Also 66B + 42B x
N of WiFi topology updates every 7 seconds are sent
to every child node, where N is count of node in the

362
363
364

mesh. The assignment defines at functionality on at
least 10 (N=10) nodes in the mesh therefore the bit
rate on the channel from all the nodes is as follows:

rate = (5212 +52*N%4,6) «x N
+((66+42xN)*8,5)* (N —1)

rate = (624 +239,2N) « N + (561 +257N)(N — 1)
rate = 67339B x 8 = 538712bpm = 8978bps

This values represents traffic on the mesh during
runtime after the mesh is settled and working.. In
the equation, there is not counted with MPS protocol,
exchange of WiFi AP credentials to child nodes and
update of topology when tree is changed. Additional
traffic will appear with user application.

On ESP3232-Buddy which have been provided by
the company for development, there is byd default 64
KB of RAM available for MicroPython. The mesh
takes about 50 KB of RAM. When importing a file
in MicroPython it takes RAM memory in Heap and
can lead to allocation errors. This can be overcome
by pre-compiling files into .mpy files which reduces
overhead while importing.

Right now the root election is set statically be-
cause there is a problem with WiFi scanning networks,
which takes between 2 and 2,5 seconds. Even though
in MicroPython WiFi scan is defined in another thread,
in RTOS it runs in the same thread as receiving of
incoming packets, therefore, it blocks the receiving.
Currently there is an effort to reimplement MicroPy-
thon port to be able to scan only one channel which
would reduce blocking time to only 120 mili seconds.
It would significantly reduce the number of dropped
packets.

Because the problem with the scanning, the claim-
ing of the child nodes with best signal was changed.
In advertisements messages there was added TTL flag.
And node can claim only nodes within the range using
TTL flag.

After 29 seconds of no new addition through MPS
into the mesh, the root is elected which takes some
amount of time. Then at worst every 7 seconds new
layer of child is added. In total 29+7*L seconds where
L is the height of the tree. Be aware that connection
to WiFi AP of parent node takes unknown amount of
time.

At the moment there haven’t been any power con-
sumption measurements to know how long can device
operate on battery, yet.

This paper discusses mesh networks and peeks into
the existing solutions in mesh networking on ESP32
microcontrollers. The proposed new mesh network
protocol is presented and its main goal is to create an
independent mesh network in environments both with
and without WiFi AP presence. It uses a combina-
tion of ESP-NOW proprietary protocol with broadcast
communication and WiFi protocol which uses unicast.

The implementation uses MicroPython with asyn-
cio library. Asyncio allows programmers to implement
concurrency in the non-blocking state with a lower
overhead than threading. The programmer also de-
cides and directs switching between tasks as he wants.
Therefore asyncio supports asynchronous 1/O opera-
tions like waiting for and reading packets.

Our solution invents a new way for the root node
election in environments without WiFi AP. Therefore
our mesh network has always a root node and creates
a tree structure of nodes in the mesh.

This project can be used as a base layer for IoT sys-
tems. Programmers can develop their own application
that will operate on top of the mesh communication.
Mesh uses only WiFi and there is no need for new
transmitting technology thus ESP32 are affordable and

ideal devices for home or small projects. But ESP32 -

are also very versatile and MicroPython allows the
creation of complex projects. There is a need to con-
figure a key for security and desired WiFi credentials
for connecting the mesh to the Internet.

This project can be improved by adding a configu-
ration layer in form of a simple HTTP server. Instead
of manually configuring mesh in program file or JSON

configuration file and uploading to the node, this web- -

server would allow setting and manual configuration
during run time.

I would like to thank my supervisor Kamil Malinka
for his advice and guidance. Big thanks belong to
my technical supervisor Sergey Silnov from company
Espressif for his ideas and other useful input during
the development of this project.

[1] Systems Espressif. ESP32 Series Datasheet.
https://www.espressif.com/sites/
default/files/documentation/
esp32_datasheet_en.pdf.

405

441

442
443
444
445
446

447

448
449

[2] Systems Espressif. Esp-now. https://docs. 452

espressif.com/projects/esp-1idf/

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html

454
455
456
457
458
459
460
461

462
463
464
465

466
467
468
469
470
471
472
473
474

[3]

[4]

[5]

(6]

[8]

en/latest/esp32/api-reference/
network/esp_now.html.

Systems Espressif. Esp-ble-mesh.
https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/api-guides/esp-ble-mesh/ble-
mesh-index.html.

Martin Woolley. Bluetooth Mesh networking,
2020. Bluetooth SIG.

Edwin van Leeuwen Coopdis, Scotty Franzyshen.
PainlessMesh. GitLab, 2019 [Online].
https://gitlab.com/painlessMesh/
painlessMesh/-/wikis/home.

Systems Espressif. Esp-wifi-mesh. https:
//docs.espressif.com/projects/
esp-idf/en/stable/esp32/
api-guides/esp-wifi-mesh.html.

Hugo Krawczyk, Mihir Bellare, and Ran Canetti.
Rfc2104: Hmac: Keyed-hashing for message au-
thentication, 1997.

John Hunt. Concurrency with AsynclO. Springer
International Publishing, 2019. 407417 p. ISBN
978-3-030-25943-3.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://gitlab.com/painlessMesh/painlessMesh/-/wikis/home
https://gitlab.com/painlessMesh/painlessMesh/-/wikis/home
https://gitlab.com/painlessMesh/painlessMesh/-/wikis/home
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/esp-wifi-mesh.html

	Introduction
	Previous works
	Proposed Mesh network using ESP-NOW and WiFi
	Implementation with asyncio in MicroPython
	Limitations and Drawbacks
	Conclusions
	References

