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Abstract
Speech separation is a task of separating single signals from the given mixture of multiple speakers.
Speech separation systems are trained on artificial mixtures generated from single speaker’s
signals. These signals are then used as targets for the training. Neural networks trained this
way work well on artificial data but they often fail on real-world examples. To improve their
behavior on real-world mixtures it is possible to use training data augmentations for example noise
addition. Nevertheless, the power of these augmentations is limited as they have to be manually
designed. Using generative adversarial networks (GAN) could improve this process by generating
augmentations for data depending on the success of confusing the separation system using these
data. Speech separation could be then made more and more robust with each generator and
separator training step.
This paper describes experiments that are used to find the right parameters and their combination
for the GAN model training. Although the experiments do not yet lead to a more robust speech
separation, they provide an analysis of the pitfalls of training the GAN, which is the necessary
first step towards a successful system. These experiments show that training the GAN model to
the stable state is difficult by adjusting the exact number of batches, after which the separator
and generator training is switched. On the other hand, adjusting the to-be-achieved scores of the
generator or separator training move could work much better and train the GAN model properly.
Other experiments have to be done to prove the correctness of these parameters and their settings.
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1. Introduction1

Speech separation systems are useful as a pre-process-2

ing for speech recognition systems which often fail on3

more overlapped speech. In these cases, the speech sep-4

aration system could improve the result of the recog-5

nition system by separating individual signals from6

the mixed speech. However, as speech separation sys-7

tems today are based on neural networks, they need to8

be trained on the mixed signals for which single sig- 9

nals are well known. For real-world mixtures, single- 10

speaker signals are usually unavailable, and thus it is 11

necessary to use artificial mixtures. This leads to a 12

problem with bad performance of speech separation 13

systems on the real-world mixtures. This creates the 14

need to make the speech separation systems more ro- 15

bust towards the real-world mixtures. 16
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The more robust speech separation system could17

be achieved by using different data augmentations18

on the training data. Classic data augmentations are19

performed by well-known methods, that are more de-20

scribed in Section 3. The disadvantage of these meth-21

ods is that they do not cover all possible augmentations22

and each new augmentation needs to be manually de-23

signed. Generative adversarial networks could be used24

to perform data augmentations for speech separation25

systems automatically. Their advantage is that they can26

generate augmentations depending on the response of27

the speech separation system.28

In this paper, a modified version of the generative29

adversarial network is used. It consists of the generator30

network generating the augmentations, the separator31

network that should be trained to be more robust, and32

the similarity loss function that constraints the genera-33

tor network. The Separator network and the similarity34

loss function represent the discriminator role. For both35

networks, the ConvTasNet [1] architecture (with dif-36

ferent parameters) has been used.37

2. Speech separation using neural net-
works

38

This section introduces the speech separation task and39

the way neural networks are used to tackle it.40

2.1 Speech separation task41

The speech separation task could be explained as a42

Cocktail party problem. Imagine a cocktail party where43

a lot of people talk over each other. The listener present44

at the party is trying to focus on one specific speech.45

The human ear and brain are well adapted to solve46

this task, but for computer systems, it is very difficult.47

More formally, there is a mixture defined as:48

yt =
N

∑
n=1

st,n (1)

where yt is the mixture to be separated, st,n is the49

speech signal of a single speaker or noise, t is the50

time index, n is the source index, and N is the number51

of sources. The main task in speech separation is to52

reconstruct signals st,n from the mixture yt with no53

information about the signals st,n.54

In the past, there were attempts to solve this task55

with classical methods such as principal component56

analysis [2] or independent component analysis [3].57

These classical methods usually work well when the58

task is greatly simplified, but they fail when silent59

blocks, echoes, and delays are present. Nowadays60

neural networks are used for speech separation tasks61

and they work well. The most used neural network 62

architectures are convolutional neural networks and 63

recurrent neural networks. 64

2.2 Training neural networks for speech sepa- 65

ration 66

Neural network is used to estimate the single signals 67

from the given mixture. During training, estimated 68

signals are compared with the known original ones us- 69

ing the scale-invariant signal-to-noise-ratio (SI-SNR) 70

function [4], which is defined as: 71

s⃗target :=
⟨ ˆ⃗s, s⃗⟩⃗s
∥⃗s∥2 (2)

e⃗noise := ˆ⃗s− s⃗target (3)

SI-SNR(⃗s, ˆ⃗s) := 10 log10

∥∥⃗starget
∥∥2

∥⃗enoise∥2 (4)

where ˆ⃗s ∈ R1×T is the estimated source. s⃗ ∈ R1×T 72

is the original source signal used as the target. The 73

∥⃗s∥2 = ⟨ ˆ⃗s, s⃗⟩ denotes the signal power, where ⟨ ˆ⃗s, s⃗⟩ 74

denotes the dot product between estimated and original 75

source. The function is scale-invariant because the 76

scale of the estimated signal does not influence the 77

result. The neural network is trained to maximize this 78

function. 79

The neural network estimates the N separated sig- 80

nals from the given mixture to the N outputs. Never- 81

theless the neural network can output the signals of 82

individual speakers in any order. This gives rise to a 83

permutation problem. 84

Figure 1. Example of permutation invariant training
(PIT) with two estimated outputs by neural network in
the orange dotted boxes and two ground truth targets
on the right from them. PIT compares estimations and
ground truth in all permutations and chooses the
permutation with the best result.

The solution is the permutation invariant training 85

(PIT) method [5] shown in Figure 1. This method 86



computes the loss function between all permutations87

of original and estimated signals. The best-computed88

value corresponds to the right permutation of the es-89

timated outputs and this value is also used for the90

training of the neural network. This method is defined91

as:92

ˆ⃗s1, ˆ⃗s2, · · · , ˆ⃗sN = S (⃗y) (5)

lPIT (S, Ŝ) = min
i

N

∑
j=1

−SI-SNR(⃗sσi, j ,
ˆ⃗s j) (6)

where S (⃗y) is separator function, that estimates sepa-93

rated signal as outputs from the given mixture y⃗. These94

signals are represented by vectors ˆ⃗s1, ˆ⃗s2, · · · , ˆ⃗sN . The95

lPIT (S, Ŝ) function takes two parameters: S, which96

is matrix of vectors of target signals and matrix Ŝ,97

which consists of vectors of estimated separated sig-98

nals. Variable N represents the number of single speak-99

ers present in the mixture. Permutation σi, j is the index100

of j-th target signal in the i-th permutation of target101

vectors given by the matrix S.102

3. Robust speech separation103

To train the speech separation system on real-world104

mixtures is really difficult as it is hard to obtain single105

speech signals from them. Therefore, the artificial106

mixtures are used instead with known single speech107

signals.108

Using solely artificial mixtures during training usu-109

ally leads to worse system results on real-world mix-110

tures. Real-world mixtures contain echoes, noises, and111

reverberations obtained from real-world spaces like112

concert halls, public places, congress rooms, airports,113

etc. The neural network does not experience all the114

variety during training, so it often leads to improper115

separation of the speech signals.116

To prevent the neural network from confusion there117

are methods to make the speech separation system118

more robust. The common way is to use data augmen-119

tations for the training data. There are many classical120

data augmentations [6] such as polarity inversion aug-121

mentation, frequency filters, decreasing or increasing122

the volume, adding noises, adding reverberation etc.123

3.1 Generative adversarial networks124

The above mentioned data augmentation methods are125

well known and they help the speech separation sys-126

tem to work better on real-world data. These methods,127

however, can not cover all the features of real-world128

mixtures, so there is a potential to use generative ad-129

versarial networks (GAN).130

The principle of a GAN models is to use two neural 131

networks, where the first one is used as the generator 132

and the second one is used as the discriminator. These 133

two networks are then trained by playing a min-max 134

game against each other. This principle is slightly mod- 135

ified in this paper. There are also two neural networks: 136

the first one is the generator network, which takes an 137

artificial mixture signal as input and provides an aug- 138

mented signal, while the second network is the speech 139

separation neural network which should be made ro- 140

bust. The basic idea is to make speech separation 141

more robust epoch by epoch by generating better and 142

better-generated data augmentations. These generated 143

augmentations are constrained by maximizing the sim- 144

ilarity between the original mixture and the augmented 145

mixture. 146

The training of GAN model consists of two steps: 147

1. Generator training, which is shown in Figure 2.
The weights of the separator network are locked.
Mixtures are given to the generator network,
which generates the augmented mixtures on the
output. Augmented mixtures are then submitted
to a separator network, which provides separated
signals. The lPIT loss function which is defined
in Equitation 6 is then computed between the
separated signals and the target ones while the
generator is trained to maximize it. In parallel,
the SI-SNR is computed between the augmented
mixtures and the original ones, which gives a
similarity value the generator tries to maximize.
This is necessary to prevent the generator from
completely destroying the information in the
mixture. The loss value used for training of the
generator network is computed as a weighted
sum of the similarity value and the separator loss
value, which is defined as:

g⃗ = G (⃗y) (7)

xsim =−SI-SNR(⃗y, g⃗) (8)

xsep = lpit(S,S (⃗g)) (9)

lgen(⃗g, y⃗,S) =−wsep ∗ xsep +wsim ∗ xsim (10)

where g⃗ is the generated augmented mixture by 148

the generator function G (⃗y), which takes mix- 149

ture y⃗ as an input. The xsim is the similarity value 150

computed by the SI-SNR function between the 151

generated augmented mixture g⃗ and the original 152

mixture y⃗. The xsep is the value computed by 153

the PIT loss function between the target signals 154

in the matrix S and the separated signals by the 155

separator function S (⃗g), that takes the gener- 156

ated augmented mixture g⃗ as an input. Then 157



the generator loss function (⃗g, y⃗,S), which takes158

the generated augmented mixture g⃗, the original159

mixture y⃗ and the matrix of the target signals S160

as an input is computed by the weighted sum161

of the similarity xsim and the xsep values. The162

weights are set by the parameters wsep, which163

sets the importance of the separator loss, and164

wsim, which sets the importance of the similarity165

value in the generator loss function.166

2. Separator training, which is shown in Figure 3.167

The weights of the generator network are locked168

in this step. The separator neural network is169

trained in the classical speech separation way,170

but it receives a certain amount of augmented171

mixtures, for example, 50%. The ratio of the172

augmented mixtures will be denoted as raug. In173

this step, the separator network is trained to han-174

dle the augmented mixtures to be more robust.175

Generator

Separator

SI-SNR
SI-SNRSI-SNR

Figure 2. Architecture of generative adversarial
network training used in this paper. This figure shows
the step where the generator is trained.

SI-SNR

Separator

Unfair coin

Generator

Figure 3. Architecture of generative adversarial
network training used in this paper. This figure shows
the step where the separator is trained.

3.2 Problems with generative adversarial net- 176

works 177

There are several problems with training GAN mod- 178

els [7]. The first of them is non-convergence, which 179

means that the GAN weights oscillate and never con- 180

verge to the one best state. The second problem is 181

mode collapse, where GAN is collapsing to the few 182

generating modes. For example, the model which is 183

trained to generate numbers only generates numbers 184

two and five. Another problem is called diminished 185

gradient. In this problem, the discriminator gets too 186

successful so the generator is unable to learn anything. 187

In this paper, we experienced a problem with the im- 188

balance between the separator and generator networks. 189

The imbalance problem and the problem of finding the 190

right parameters are described in Section 4 in a more 191

detailed manner. 192

Another problem that appears when training the 193

separator together with the generator is the right choice 194

of the best model. In the classical neural networks 195

training methods, the best model is chosen depending 196

on the best cross-validation loss value during the train- 197

ing. This is not applicable in this paper. It is necessary 198

to find the right separator model, which works well on 199

both the original and the augmented data. The gener- 200

ated augmentations are changing during the training 201

due to the changes in the generator. Therefore, it is not 202

possible to compare the validation loss values through 203

separator models from different epochs. This causes a 204

problem with the best separator network selection. 205

The solution is to save generator and separator 206

models from each epoch during training. They can 207

be used to generate augmented mixtures by randomly 208

choosing a generator from a uniform distribution for 209

each mixture of the cross-validation set. Thus aug- 210

mented mixtures now represent all possible augmen- 211

tations learned during training. Now it is necessary 212

to choose the right separator, which will be the most 213

robust one. This task could be achieved by evaluating 214

each separator on mentioned augmented mixtures. The 215

separator with the best evaluation result should be the 216

most robust one. 217

4. Experiments 218

Experiments with a generative adversarial network 219

used to make the speech separation more robust are 220

performed with the setup described below. The first 221

experiments try to find the applicable combinations 222

of parameters, which do not lead to one of the GAN 223

training problems. 224
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Figure 4. ConvTasNet neural network architecture. Image adapted from [1]

4.1 Dataset225

Experiments are provided on the Wall Street Journal226

dataset (WSJ) [8]. It consists of three parts, which227

contain training, cross-validation, and testing data.228

The dataset contains both mixtures and parallel single-229

speaker recordings. Speakers are randomly mixed with230

various signal-to-noise ratios (SNR) between 0 dB and231

5 dB. For training there are 20000 mixtures correspond-232

ing to 30 hours, for cross-validation, there are 5000233

mixtures corresponding to 10 hours, and there are 3000234

mixtures corresponding to 5 hours for testing.235

The second dataset used in the experiment is WSJ0236

Hipster Ambient Mixtures (WHAM) [9]. This dataset237

pairs each two-speaker mixture in the WSJ dataset238

with the unique noise background scene. The sizes239

of training, cross-validation, and testing parts are the240

same as in the raw WSJ dataset.241

4.2 ConvTasNet242

The neural network architecture used for both networks243

(separator and generator) is ConvTasNet [10]. This244

architecture consists of three parts as it is shown in245

Figure 4.246

The first part is the encoder which consists of one247

convolutional layer. This layer takes the mixture signal248

as an input and provides pseudo short-time Fourier249

transform (STFT) transformation of the given signal.250

An encoded signal is then given to the second part of251

the architecture.252

This part is called separator and provides separa-253

tion as the name reveals. The separation part consists254

of the blocks of the convolutional layers that are ap-255

plied to the larger and larger context. The output of256

this part is a series of masks for each speaker. These 257

masks are applied to the encoded signal and given to 258

the last part, decoder, as an input. 259

The decoder part consists of one convolutional 260

layer like the encoder part. The task of this part is to 261

reassemble the signal from the encoded pseudo STFT 262

format. Parameters of the ConvTasNet are shown in 263

Table 1. The table also shows the parameter values for 264

the generator and separator neural networks used in 265

the experiments. 266

4.3 Initial separator and generator networks 267

setups 268

The separator network used for training has been pre- 269

trained on one of the above mentioned datasets or their 270

combination. So there are three separator networks 271

used in experiments, each pretrained on one of them. 272

The baseline pretrained scores are shown in Table 2. 273

From the given results it is obvious that the WHAM 274

dataset is much more difficult than the WSJ. This is 275

caused by the noises added to the mixtures. If the sys- 276

tem is trained on the WSJ and tested on the WHAM, 277

then the results are quite poor. 278

The generator network is much smaller than the 279

separator one and it has been pretrained for the self- 280

identity task. Since the aim of the GAN training is 281

not to train the encoder and decoder parts of the Con- 282

vTasNet, pretraining the self-identity task removes the 283

encoder and decoder training problem. 284

4.4 Adjustable parameters 285

The first task of the experiments is to find the right 286

combination of parameters that will train GAN prop- 287

erly. The adjustable parameters are: 288



Table 1. Hyperparameters of the ConvTasNet network [1]

.

Symbol Description Generator Separator
F Number of filters in autoencoder 128 128
L Length of the filters (in samples) 40 40
B Number of channels in bottleneck 128 128

and the residual paths’ 1×1-conv blocks
H Number of channels in convolutional blocks 192 192
P Kernel size in convolutional blocks 3 3
X Number of convolutional blocks in each repeat 3 7
R Number of repeats 1 3
O Number of outputs 1 2

Table 2. Baseline results of pretrained separator
neural networks. Results are computed by SI-SNR
loss function using PIT method. Datasets in rows are
the training ones. Testing datasets are in columns.

WSJ WHAM
WSJ 12.46 -2.99

WHAM 9.04 6.09
WSJ + WHAM 12.34 6.45

• Separator loss weight wsep, which sets the impor-289

tance of the separator loss in generator training.290

The generator training loss function is defined291

by Equation 10. The separator loss value is com-292

puted during generator training on the generated293

augmented mixtures. The generator is trained to294

maximize the separator loss in order to confuse295

the separator as much as possible.296

• Similarity loss weight wsim is used to indicate297

the importance of the similarity between the298

generated augmented mixture and the original299

one. This loss function is also computed during300

training and its role is to constrict the generator301

so that it would not generate complete nonsense.302

GAN model is switching between the separator303

and generator training during each epoch. Two param-304

eters control this:305

• Separator batch cap csep, which sets how many306

batches will be used in separator training turn.307

• Generator batch cap cgen, which sets how many308

batches will be used in generator training turn.309

For example, when csep and cgen are set to 10, the310

generator will be trained on the first ten batches. After311

this, the training is switched to the separator training,312

which uses other ten batches and then switches back.313

The number of batches for each model can significantly314

influence the training and these parameters are difficult315

to set properly.316

The last two adjustable parameters are the ratio of317

the augmented mixtures during the separator training318

raug and the similarity loss SI-SNR cap csim, which 319

sets the value that is used to clip the similarity loss to 320

a maximum value. This serves to prevent the similar- 321

ity function to be too strong in comparison with the 322

separator loss function results. 323

4.5 Initial experiment 324

The initial experiment is set with following parameters: 325

• wsep and wsim = 1.0, 326

• csep and cgen = 10, 327

• raug = 0.5 and 328

• csim = 40. 329

The purpose of the initial experiment was to in- 330

spect the basic behavior of the loss functions during 331

the training. The results are shown in Figure 5. The 332

separator loss function curve shows that the generator 333

network managed to completely confuse the separator 334

network. Although this is the task of the generator, 335

in this case, the generator completely dominated the 336

training to the point that the separator was unable to 337

adapt to the augmented mixtures. The strength of the 338

generator network is possibly caused by: 339

1. Too much emphasis on the separator network 340

confusion, which could be adjusted by the pa- 341

rameters wsep and wsim. These adjustments will 342

be examined in Section 4.6, or 343

2. Too much training space for the generator net- 344

work, which could be adjusted by the parameters 345

cgen and csep. These adjustments will be exam- 346

ined in Section 4.7. 347

4.6 Generator loss weights 348

The base experiments lead to the imbalance between 349

the generator and separator network. There is a chance 350

to solve this imbalance problem by finding the correct 351

weights wsep and wsim. 352

Therefore, other experiments are set with different 353

combinations of values of the weight parameters. Thus 354

the separator weight wsep value is reduced by tenths 355

to 0.1 with similarity weight wsim locked at 1.0. This 356



0 20 40 60 80 100 120 140
Epochs

100

80

60

40

20

0

20

- S
I-S

NR
 [d

B]

GAN/Train separator loss

(a) Training curve of the separator loss function

0 20 40 60 80 100 120 140
Epochs

40

35

30

25

20

15

10

5

SI
-S

NR
 [d

B]

GAN/Train similarity loss

(b) Training curve of the similarity loss function

Figure 5. Training curves of the separator and
similarity loss computed during the generator training
move each epoch. These curves shows collapse of the
GAN model with initial parameters setting to the
imbalance state, where the generator is too strong for
the separator.

could reduce the generator strength and help to a better357

system balance.358

Experiments collapse to two modes, where the359

generator network:360

1. Is too strong and overwhelms the separator net-361

work, or362

2. Generates very similar mixtures to the original363

ones and does not make any changes.364

The first mode is achieved when the csep is above365

the value 0.5 as shown by the orange curves in Fig-366

ure 6. Lower values collapse to the second mode,367

where the similarity loss function has a big influence368

on the generator as it is shown by the blue curves in369

Figure 6.370
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Figure 6. Training curves of the separator and
similarity loss computed during the generator training
move each epoch. These curves show the collapse of
the GAN model with wsep = 0.7 to the imbalance
state, where the generator is too strong for the
separator.

4.7 Separator and generator batch caps 371

Another idea is to solve the collapsing to the first mode 372

by the right combination of the separator and genera- 373

tor batch cap parameter values. The main issue is that 374

the generator confuses the separator too much. There- 375

fore, increasing the separator batch cap csep could help 376

the separator to better adapt to the augmented mix- 377

tures. The fixed value wsep = 0.7 was used in batch 378

cap experiments. This value has been chosen because 379

although the system with these settings collapses to 380

the first mode, it reduces the impact of the separator 381

loss function on the generator. The csep value is incre- 382

mented by the unit. Nevertheless, the system does not 383

stabilize again, it collapses to the second mode when 384

the csep >= 13 as it is shown by the blue curves in 385



Figure 7. With lower values of csep, the system stands386

in the first collapse mode as it is shown by the orange387

curves in Figure 7. Therefore, it means that the batch388

cap parameters are not distinguished finely enough.389
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Figure 7. Training curves of the separator and
similarity loss computed during the generator training
move each epoch. The blue curves show the collapse
of the GAN model with csep = 12 to the imbalance
state, where the generator does not generate any
augmentations. The orange curves show the collapse
of the GAN model with csep = 13 to the imbalance
state, where the generator is too strong for the
separator.

4.8 Automatic separator and generator batch390

caps391

After these experiments, it turned out that adjusting the392

batch caps csep and csim is not enough to stabilize the393

training. The constant batch cap values still lead to one394

of the two collapse modes described in Section 4.6,395

i.e. one of the models is too strong while the other396

does not learn anything. Here, we explore another way397

to balance the training, where the number of batches 398

for each model is adjusted dynamically, based on the 399

SI-SNR value of the separator. The generator is thus 400

trained until the separator gains loss values higher than 401

parameter csnrgen and the separator is trained until the 402

separator does not achieve a loss value higher than 403

parameter csnrsep on the augmented mixtures. 404

Experiments using this method are initially set 405

with parameters: 406

• wsep = 0.6, 0.7, 0.9 407

• wsim = 1.0, 408

• csnrgen = 0 409

• csnrsep = 5.0, 410

• raug = 0.5 and 411

• csim = 20. 412

The csim value follows the knowledge from the pre- 413

vious experiment, where the similarity values around 414

the 40dB overweight values of the separator loss func- 415

tion during the generator training. These experiments 416

use the pretrained separator model on the WSJ dataset. 417

From training curves shown in Figure 8 it is evident, 418

that systems trained by using this method do no longer 419

collapse to the modes mentioned in Section 4.6. The 420

training curve that stands for the level of the separator 421

confusion converges to the value set by the parame- 422

ter csnrgen. The second chart shows that the training 423

curve of the separator gained values on the augmented 424

data, which converges to the value set by the parameter 425

csnrsep. 426

4.9 Final results 427

The best-trained separator model has to be found. This 428

is provided by generating augmented mixtures by ran- 429

domly chosen trained generators. Then each tenth sep- 430

arator model is evaluated on all generated augmented 431

mixtures. The model with the best result is then cho- 432

sen for the evaluation using the test data. The results 433

of the separator selection are shown in Figure 9. The 434

first chart shows the overall results of each evaluated 435

separator model. The bar charts show how the separa- 436

tor was successful on the generated augmentations by 437

each generator. Bars represent groups of generators, 438

which are grouped by their epoch number. 439

The separator with the best score is chosen as the 440

best one. This separator is then evaluated on the WSJ 441

and WHAM datasets. The results are shown in Table 3. 442

They show that the trained GAN model with the above 443

mentioned parameters setting does not train the separa- 444

tor to be more robust. This is tested by evaluating the 445

best separator model on the testing part of the WHAM 446

dataset. The SI-SNR result achieved by the separator 447

model pretrained on the WSJ dataset is similar to the 448
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Figure 8. The training curve of the separator loss
computed during the generator training moves each
epoch and the training curve of the computed
separator loss function during the separator training
on the augmented mixtures. These curves show, that
the curves converge to the set parameters csnrgen and
csnrsep. The csnrsep parameter value is inverted during
the training.

model trained by the GAN, when evaluating on both449

the WSJ and WHAM datasets. There are three exper-450

iments using different separator weights, but none of451

them has achieved better results. Further experiment-452

ing is to be done to examine if there is any parameters453

settings combination that leads to better final results.454

5. Conclusions455

This paper investigates the usage of generative net-456

works to automatically augment training data for speech457

separation systems. This could replace manually de-458

signed data augmentation methods and make the speech459

separation system more robust.460

Table 3. Final results of the experiments with
automated cgen and csep parameter settings. In first
column there are different wsep parameter settings.
Other columns represent results from the evaluation
on the tested part of the WSJ or WHAM dataset. The
columns with original annotation contain evaluation
results of the raw pretrained separator model on the
WSJ dataset. The columns with the augmented
annotation contain the evaluation results of the best
separator model chosen from the GAN training.

WSJ WSJ WHAM WHAM
original robust original robust

wsep = 0.6 12.46 12.18 -2.99 -2.89
wsep = 0.7 12.46 11.95 -2.99 -2.78
wsep = 0.9 12.46 11.36 -2.99 -3.05

The main obstacle to training such a system is find- 461

ing the correct parameters. These parameters should 462

be chosen experimentally. The presented experiments 463

show, that the system collapses to the two modes. 464

Other experiments are set to solve this collapsing show 465

that adjusting exactly the amount of the training space, 466

which is given for both separator and generator net- 467

works during the training epoch is ineffective. There- 468

fore, it is better to use the automated adjusting method 469

of the amount of the training space. The automated 470

method sets the goals of the generator and separator 471

networks that should be achieved by each of them 472

during their training turn. 473

The model using this automated method no longer 474

collapses to one of the instability modes. However, as 475

the final results reveal it does not train the separator net- 476

work to be more robust properly. Further experiments 477

have to be done to find the right parameters combina- 478

tion, that will train the separator network to be more 479

robust. Adjusting the weight of the similarity function 480

or different values of the generator and separator goals 481

parameters could improve these results. 482

If such a parameters combination will be discov- 483

ered, it will fit only for the current model with current 484

settings and the current dataset. If there will be any 485

change in of those three things, it is necessary to find 486

the right parameters combination again. Therefore, the 487

GAN parameters are very sensitive, it is very difficult 488

to find such a combination. Nevertheless it is possible 489

to use some algorithms to find the right parameters 490

such as evolutionary algorithms [11] or bayesian hy- 491

perparameter optimization [12]. If these methods will 492

work how they should then the using a GAN to make 493

speech separation system robust could be used widely. 494
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Figure 9. Results from finding the best separator model from trained GAN with parameter wsep = 0.7. The first
chart shows the SI-SNR means of evaluated separators. The other charts show the results on generated
augmented mixtures of the separator models from the each selected epoch
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