
http://excel.fit.vutbr.cz

Animation of Avatar Face Based on Human Face
Video
Martin Takács*

Abstract
This paper presents an application for animating a 3D avatar based on a single camera or video
input of the human face in real time. The resulting application consists of three modules — face
tracking, avatar animator, and a server for transferring face data. The input frame from the camera
or video is processed and data are sent to the server from where the data can be sent over to
multiple avatar animators so it is possible to animate multiple avatars based on a single input.
Face tracking works in real time (30+ FPS based on camera and device on which it runs) and the
avatar animator runs in a web browser so no additional installation is required.
Animating 3D avatars based on human face is becoming more and more popular thanks to content
creators who do not share their real face, but still want to interact with their audience or act as a
virtual character on streaming platforms such as YouTube or Twitch.

Keywords: Face Tracking — 3D Character — Face Animation

Supplementary Material: Demonstration Video — Downloadable Code
*xtakac07@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Online content creators on streaming platforms (Youtube,
Twitch) present themselves behind virtual avatars to ap-
proximate the in-game-like feeling for their audience.
The audience does not see the real person, but rather
an real-time animated avatar based on the human face
input – to protect the author’s privacy.

This project aims to simplify the work of afore-
mentioned content creators or users. The users just
need to run the system and they obtain three modules,
which run independently, and can choose among mul-
tiple avatars. They can run the avatar animator module
in multiple windows to animate multiple avatars at the
same time. As the avatar animator module runs in
a web browser, no additional installation is required.
Therefore, the only requirement for the proper run of

the project is a camera connected to the computer.

Several different technological solutions exist for
face tracking as well as loading and animating avatars.
Tensorflow.js and Mediapipe are runtimes used for
face tracking on desktops and on mobile devices. Both
runtimes were compared in [1] using pose detection.
Results have revealed, that Tensorflow.js runs signifi-
cantly slower on desktop and Android devices. It has
surpassed Mediapipe only on iPhones.
Traditional solutions for estimating head position re-
quire additional hardware, such as a head-wearable
marker structure. This approach is explained in [2].
Not all methods for animating avatars use standard
3D models. One of the exceptions is a Live2D model,
which is slightly more popular than 3D, because it
gives the impression of a moving picture. As explained

http://excel.fit.vutbr.cz
https://youtu.be/NmKobSX5TTI
https://github.com/Junacik99/bac
mailto:xtakac07@fit.vutbr.cz


in [3], Live2D is a 2D image that is animated without
requiring any changes. However, 3D formats, such as
VRM1, FBX or GLTF are more practical, since they
offer more variability and scalability.

My solution allows users to use any rigged 3D
avatar in the GLTF file format since this file format
is hierarchical and very suitable for deforming bones
of armature. As mentioned before the project consists
of three modules. Two of which are python scripts
(face tracking and websocket server) and the last one
is a simple HTML page and can run in most of the
web browsers (avatar animator). The face tracking and
websocket server can have only one instance running at
a time unless the ports are manually changed, while the
avatar animator can have as many instances running
as the hardware allows. The user first needs to run the
websocket server. Then the face tracking and the avatar
animator modules will automatically connect. The
websocket server listens to the face tracking module
which sends data about human face from camera input
and then the websocket server distributes those data to
every avatar animator connected.

2. Face Tracking

The core part of the project is to correctly recognize
and capture human face in the video input, whether it
is from the camera or video file.

To do this, I use python OpenCV package to read
video input frame after frame. It is possible to choose
among multiple connected cameras (0 is default index)
or specify the path to the video file, in which I want to
capture a human face.

Frames are processed consecutively. Firstly the im-
age is flipped horizontally and color space is converted
from BGR to RGB. After this, the image is proecessed
to capture the human face and shown in a separate
window as a frame from camera or video and human
face annotations as shown in Figure 1.

To process the human face in the image, I use
Google’s open-source framework for media processing
– MediaPipe. The framework is distinctly explained
in [4].

As explained in [5], FaceMesh is a solution that
estimates facial surface geometry – 468 (refined 478)
landmarks in real time. Landmarks are vectors in 3D
space that make it easier to calculate transforms for
the avatar. As shown in Figure 2, in my project, not
all 478 landmarks are necessary, because avatars has a
very limited number of bones that could be deformed.
It is enough to take only the most important ones, such

1VRM specification could be found here.

Figure 1. Processed face and drawn face landmarks.

Figure 2. Highlighted landmarks - only few
landmarks out of total 478 are actually important for
my solution. The original image of face geometry is
from google’s mediapipe repository.

as the very top, very bottom and sides of the face, lips,
eyes, irises, eyelids and nose.

From obtained landmarks (vectors) I can easily
calculate how much is the mouth opened, if the right
or left eye blinked, head rotations (rotation, nod, turn)
and, as shown in Figure 3, the direction in which are
eyes looking. Most calculations are done through cal-
culating an euclidean distance between two points ex-
cept for the nodding and the turn of the head. The
nodding and turning of the head are calculated through
the rotation matrix which gives much better and more
precise result than the simple euclidean distance be-
tween two points. As explained in [6], three euler
angles could be obtained from the rotation matrix.

Finally, calculated parameters are sent to the web-

https://github.com/vrm-c/vrm-specification.git
https://github.com/google/mediapipe/blob/master/mediapipe/modules/face_geometry/data/canonical_face_model_uv_visualization.png


Figure 3. Calculating position of the iris inside the
eye. Co-ordinates are [0, 0] - bottom left, [1, 1] - top
right.

socket server as a message in the JSON format. The
websocket server then broadcasts that message to all
avatar animators connected to the server as will be
explained later in Section 4.

3. Avatar animator
When data from the real world has been obtained it is
possible to animate the virtual avatar based on those
data. This is done right in the user’s browser so no
additional application is required and multiple tabs
with different avatars can be opened at the same time.

Before animating the avatar, the Animator needs to
connect to the websocket server from where it listens
to incoming messages that contain important data for
animating the avatar. Avatar animator never sends
messages back to the server, only listens to it.

Each avatar needs to be rigged before use, but no
animations are required as the avatar will be animated
in real time based on the real world data. Avatar also
needs to have named bones and has to be exported in
GLTF file format, which allows for easy traversing of
the whole avatar.

To load the GLTF model, create a scene, render it
and to animate I use module ThreeJS.As mentioned
in [7], ThreeJS is very suitable for skeletal animations.
After the loading of a GLTF file - an avatar, it is added
to the center of the scene.
ThreeJS allows for the setting of the lighting, back-
ground. These settings can be dynamically changed
via GUI overlay.
ThreeJS also allows for the camera control, so the user
is able to rotate around the avatar, zoom in and zoom
out.

Each model can have different properties such as
the size or direction of bones. For users to be able
to continuously switch among different avatars, each
model needs a configuration file with bones names,

{
"bones" : {

"bone_jaw": "Quijada",
"bone_head": "Cabeza",
"bone_eye_L": "Ojo_Control",
"bone_eye_R": "Ojo_Control_2",

"multipliers": {
"jaw":-4,
"head_rot":1,
"head_nod":1,
"head_turn":1

},

"offsets": {
"head_rot": 0,
"head_nod": 0,
"head_turn": 0

}
},
"scale_factor" : 3

}

Figure 4. Example of a configuration file for the
avatar.

// Jaw
if (bone_jaw != null){

scene.getObjectByName(bone_jaw).
rotation.x = base_jaw_rot + msg.gap

* jaw_mul
}

Figure 5. Example of updating bone transforms of the
jaw.

multipliers and offsets for bones, as shown in Figure 4.
Scale multiplier defines how much the model should
be scaled for proper . This configuration file is loaded
before the actual model.

After loading the model, scene is configured with
lights, background, and a controllable camera. To
switch among avatars, I use a simple HTML form with
the dropdown menu where option values are paths to
different GLTF files.

With properly loaded object and obtained real world
data, the scene is set and the avatar ready to be ani-
mated. To do this, I find a bone, which name corre-
sponds with the name given in the configuration file
and change its rotation around the axis where neces-
sary.

Figure 5 shows the example of code to update a
particular bone transform with newly obtained data,
where the bone jaw is the name of the bone deforming
the jaw, base jaw rot is the default rotation of jaw
right after the model is loaded, jaw mul is multiplier
specified in the configuration file of the model and
msg.gap are data obtained from the websocket server.

The similar approach is used for bones of head,



Figure 6. Avatar after applying new transforms for
bones.

eyes and eyelids leaving the impression that the avatar
is really moving alongside the user in the real world
or in the video. Figure 6 shows the moving avatar. Its
head is slightly rotated, mouth is opened and eyes are
looking to the right side.

4. Websocket server
With fully functional Face tracking and Avatar ani-
mator, their only problem is that they are completely
independent modules. However, this might be an ad-
vantage depending on the point of view. Running
Avatar animator independently from Face tracking al-
lows users to run multiple instances of Avatar animator
at the same time and animate them based on the same
input data from Face tracking.

However, the intermediator, the middle man is re-
quired to transfer data correctly from the Face tracking
module to the Avatar animator. That means bidirec-
tional communication is required to both receive data
and send data. As explained in [8], the websocket
server allows this.

The websocket server registers all clients connected
to it and then broadcasts messages to all registered
clients. Even Face tracking module is a registered
client, but it does not handle incoming messages and
it only works one way (from Face tracking module to
the websocket server) as shown in Figure 7.

The Avatar animator works the other way around.
It only listens to messages from the websocket server
and never sends data back. That would create unneces-
sary loops and those kinds of messages would need to
be filtered.

Figure 7. Websocket server recieves data from Face
tracking and distributes them to Avatar animators.

5. Evaluation
Three modules were tested on Windows 10 device,
using AMD Radeon RX 480 GPU, Intel Core i7-9700F
CPU and two different cameras: Genius WideCam
F100 and Xiaomi Redmi Note 9 Pro’s front camera
connected via Iriun webcam software2.

Both cameras performed similarly, their FPS matched
at 30 according to the FPS counter. However, since
Genius camera has wide angle (120◦), the face appears
to be smaller in the input image, distance between
landmarks is also smaller and thus making results of
calculations less accurate.

The system is intended to work with a single cam-
era, however, it is possible to have multiple cameras
connected to the websocket server. This creates un-
desired behaviour of avatars, because data from both
face tracking modules are broadcasted to all connected
avatar animators.

As mentioned above, the biggest advantage of this
solution in comparison to other existing solutions is
the ability to animate multiple avatars simultaneously.
This ability proved in tests3 to be working as expected
(60+ FPS render speed).

6. Conclusions
I created the system that takes human face video input
from a camera or video file and calculates important
transforms from face landmarks. Based on those trans-
forms, the system animates the avatar in real time. It is
possible to animate multiple avatars at the same time.

The system captures face and animates the avatar
in 30+ FPS depending on the hardware used so the

2https://iriun.com/
3Test showing both camera FPS and rendering FPS, while

rendering 7 avatars - https://imgur.com/UwGXeRq.

https://iriun.com/
https://imgur.com/UwGXeRq


movement is smooth for the human eye.
Captured face returns landmarks that can jiggle if

the camera is not decent enough which creates a shak-
ing impression of the avatar. Future work is needed to
smooth those kinds of movements. Also, the Avatar
animator is limited to GLTF files and it would be ad-
vantageous to extend the loading system to accept other
file formats such as FBX or VRM.

Acknowledgements
I would like to thank my supervisor prof. Ing. Her-
out Adam, Ph.D. for his help, advice, comments, and
guidance in the course of making this project.

References
[1] Ivan Grishchenko et al. 3d pose detection with

mediapipe blazepose ghum and tensorflow.js. [on-
line], 2021.

[2] Jeroen Lichtenauer and Maja Pantic. Monocular
omnidirectional head motion capture in the visible
light spectrum. pages 430–436, 11 2011.

[3] Koichi Nakagawa et al. The use of live2d as an
animation education tool. Bulletin of Kurashiki
University of Science and the Arts, (22):15–21,
2017.

[4] Camillo Lugaresi et al. Mediapipe: A frame-
work for building perception pipelines. CoRR,
abs/1906.08172, 2019.

[5] Yury Kartynnik, Artsiom Ablavatski, Ivan Gr-
ishchenko, and Matthias Grundmann. Real-time
facial surface geometry from monocular video on
mobile gpus. CoRR, abs/1907.06724, 2019.

[6] Gregory G Slabaugh. Computing euler angles
from a rotation matrix. Retrieved on August,
6(2000):39–63, 1999.

[7] Amit L. Ahire, Alun Evans, and Josep Blat. An-
imation on the web: A survey. In Proceedings
of the 20th International Conference on 3D Web
Technology, Web3D ’15, page 249–257, New
York, NY, USA, 2015. Association for Computing
Machinery.

[8] Alexey Melnikov and Ian Fette. The WebSocket
Protocol. RFC 6455, December 2011.


	Introduction
	Face Tracking
	Avatar animator
	Websocket server
	Evaluation
	Conclusions
	References

