
http://excel.fit.vutbr.cz

Modeling of Border Gateway Protocol
Jan Zavřel*

Abstract
Border Gateway Protocol (BGP) was first sketched on two napkins over a conference lunch in 1989
by two gentlemen, and it would become one of — if not the most — essential routing protocols of
our time in just a few years. It creates the global routing system of the Internet. Billions of people
rely on BGP every single day without even knowing about it. A recent example of our collective
reliance on BGP takes us back a few months ago when Facebook engineers misconfigured their
BGP instances, effectively cutting themselves off from the outside [1]. The global importance of
this protocol led to the creation of this paper, which discusses improvements to the BGP simulation
model. Such a model, if of high quality, could help network engineers and others test the stability
of their topologies and configurations inside a safe discrete environment. The model, written in
C++, is improved and extended in several directions with new features, such as full support for the
IPv6 address family, Cisco-like configuration, the BGP table, TCP improvements, and many more.
The quality of the model is ensured by a close comparison of all aspects of the model to Cisco’s
implementation of BGP.

Keywords: BGP — simulation — routing protocol — OMNeT++ — INET

Supplementary Material: Author’s version of BGP simulation model, INET version of BGP simula-
tion model, Novák’s version of BGP simulation model

*xzavre10@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

With BGP being the only EGP protocol to tie tens
of thousands of Autonomous Systems (AS) together,
deep knowledge of this protocol can be significantly
beneficial to most network engineers. Especially when
even a small mistake can render services, which mil-
lions of people rely on, completely unavailable. Minor
BGP configuration errors occur daily and cause global
impacts of a wide variety of severity [2]. And that is
just the tip of the iceberg, as there are many topology
design decisions, which are made by ISPs and other
organizations, that could cause unnecessary service
outages [3]. BGP forwarding information base (FIB)
table is still steadily growing, as shown in Figure 1,

with each entry representing one advertised prefix by
some public AS. One way of getting closely familiar
with a complex protocol such as BGP is through ex-
perimentation on a simulation model. If such a model
reliably reflects reality, behavior patterns during crit-
ical scenarios can be observed and analyzed within
a safe and risk-free environment. The results can be
taken into account during the next topology design
iteration, leading to a more stable and optimal design.
However, simulation is not the only way to experiment
with BGP.

There are currently three paths (two comfortable
and one problematic) that can be taken if one is in-
terested in conducting experiments with BGP. Let us

http://excel.fit.vutbr.cz
https://github.com/AwziNihilist/inet/tree/topic/ANSA-BGP/src/inet/routing/bgpv4
https://github.com/inet-framework/inet/tree/master/src/inet/routing/bgpv4
https://github.com/inet-framework/inet/tree/master/src/inet/routing/bgpv4
https://github.com/xnovak1j/DP-BGP/tree/master/inet4/src/inet/routing/bgpv4
mailto:xzavre10@stud.fit.vutbr.cz


Figure 1. Active IPv4 BGP entries over years, currently sitting at 916,649. IPv6 is currently at 154,022 entries.
Image and data sourced from [4, 5].

start with the problematic one: experiments on real
devices. This solution lacks scalability and is also
very expensive. Software on these devices, including
the implementation of routing protocols, is often not
open-source, and because of that, such device is more
like a black box with the user hoping that it behaves
accurately according to its specification. The benefit
of choosing real devices is that their implemented pro-
tocols are often effective and, most importantly, one
does not have to worry about the quality of any model
or emulation discrepancy. The other two ways of con-
ducting experiments are leveraging either emulators or
simulators. Emulators such as GNS3 [6] or EVE-ng
[7] can unpack and run binary firmware images found
also on real devices. This solution, in comparison to
real devices, substantially cuts costs, but still lacks
transparency. Simulators, on the other hand, can of-
ten offer transparency together with source code-level
customizability, which greatly encourages its users to
become invested and experiment on such models even
more. Together, users can improve the simulation mod-
els and share their ideas with the community without
specific hardware requirements. The downside of this
approach is the direct reliability on the accuracy of
the model. Because the model has to be implemented
from scratch, there is a lot of space for errors. The
simulator that this paper is working with is OMNeT++
[8], but there are other similar projects and there are
also simulation models which are self-contained and
do not require a complex simulator environment.

One of the most popular well-known simulators
is Cisco Packet Tracer [9], but its implementation of
BGP is hugely limited as it completely lacks the iBGP
part of BGP.

This paper talks about a model of BGP specifi-
cally tailored to be run in OMNeT++ simulator with
the INET framework [10]. INET contains a set of im-
plemented network protocols (e.g., Ethernet, IP, TCP,
UDP, etc.) that can be used by other protocol models.

2. History of the BGP Model in OMNeT++
BGP4 protocol model has been included in INET for a
long time and was originally developed by OMNeT++
developers [11]. At this time, BGP had many short-
comings: BGP UPDATE messages did not contain all
necessary routes, the states of the finite-state machine
were inconsistent, some message types were unsup-
ported, and the model had trouble recovering during
changes to the topology. All of these shortcomings
are described in the master’s thesis by Adrián Novák
[12]. He started his work in 2018. At the same time,
contributor Mani Amoozadeh worked on his improve-
ments for the BGP protocol model that were merged
into INET later on in 2018 [13]. However, the changes
made by Adrián Novák were not merged, as this im-
plementation requires another rewrite in order to be
compatible with the new INET and also synchronized
with the changes and features that were made by Mani
Amoozadeh and OMNeT++ developers.

During my rewrite of the model, a lot of issues
of Novák’s approach became apparent. Support for
IPv6, which was one of the most prominent features
that Novák added, was rewritten from the ground up
with the mentality to avoid address-family specific
methods as much as possible. Other improvements are
mostly regarding the router’s main operation loop, so
that routes are processed in bulk, node operability that
allows nodes to handle common operations during the



simulation, TCP improvements, so the connection can
be reliably established, and Cisco-like configuration,
which is more realistic and versatile and easily derived
from configuration of real devices.

The ultimate goal is for this greatly improved model
to be accepted and merged into INET itself. Because
this new improved version would replace the old ver-
sions, there are a lot of requirements set by the INET
maintainers. From their point of view, this new ver-
sion should be a clear improvement that introduces
exactly zero new problems, so that all users experi-
menting with BGP would recognize this version, and
no forking or branching happens.

3. Basics of BGP
Border Gateway Protocol is used as a common lan-
guage between Autonomous Systems. With the usage
of BGP, these ASes exchange network prefixes. The
information about these prefixes is then used by routers
to route traffic to the desired destination. To be able to
fully appreciate BGP, one has to understand the basic
theory of AS.

3.1 Autonomous Systems
The Internet is divided into smaller and more easily
manageable networks called Autonomous Systems.
These smaller parts are often operated by different ad-
ministrative entities and use a custom set of rules and
policies. Routing inside an AS is usually managed by
IGP (e.g., OSPF, RIP, EIGRP, IS-IS) or static routing,
while connectivity between ASes is typically achieved
with BGP. Every public AS is identified by a unique
public AS number. One public AS can contain mul-
tiple private ASes. These are only used for internal
subdivisions and are not advertised via BGP. Public
AS numbers are assigned by the respective Regional
Internet Registries, e.g., RIPE NCC for Europe. Every
AS can be connected to other ASes in different ways:

• Single-Homed AS (a.k.a. Stub AS) - connects
to a single external AS;

• Multihomed Nontransit AS - connects to mul-
tiple other ASes, does not allow transit traffic;

• Multihomed Transit AS - connects to multiple
other ASes, allows transit traffic.

In 2006, it was estimated that around 20-30% of all
ASes are transit [14]. The total number of ASes world-
wide is currently sitting at 109 996 [15]. Tools such
as DB-IP 1 can be used to access publicly available
pieces of information about ASes, their registered or-
ganizations, and IP prefixes.

1https://db-ip.com/

3.2 eBGP vs. iBGP peering
BGP recognizes two different types of peering (i.e.,
prefix exchanging): External BGP (eBGP) and Internal
BGP (iBGP). External BGP peering is established with
peers that belong to a different AS. The only neces-
sity is TCP connectivity and pre-shared IP addresses
between the organizations, as BGP does not use dy-
namic neighbor discovery. In contrast, Internal BGP is
established between peers within the same AS. iBGP
requires a full-mesh peering in regard to other routers
in the same AS.

Each BGP router, also known as BGP speaker,
advertises only the best route for each destination to
configured peers. BGP can learn about prefixes in two
ways:

• insertion into BGP locally via a static insertion
or via redistribution by other routing protocols;

• receipt of Update Message advertising prefix as
reachable by a BGP peer.

Routes received via BGP are generally advertised
to other BGP peers — unless they are received from
iBGP peers, in which case they are never advertised to
other iBGP peers. Routes are withdrawn from the BGP
if they become unresolvable or if an Update message
is received, which requests withdrawal of routes.

3.3 Route representation
Each route embodies a reachable destination network
prefix and is accompanied by a set of attributes. All
these routes are stored in a data structure called BGP
Table with the best route for each destination being
highlighted or inserted into BGP Routing Table. These
routes are the candidates for installation into the router’s
routing table, but can be overruled by route with a
lower administrative distance. BGP does not use a
single number to represent the quality of a route and
instead uses a set of attributes to assess the desirability
of a route. Each AS individually sets the weight of
each attribute and so the path selection is influenced
by the policy of the given AS. Mandatory attributes for
each route are the following:

• ORIGIN - source of the information;
• AS PATH - vector of AS number the route passed

through;
• NEXT HOP - IP address that should be used as

a next-hop for the destination.

3.4 BGP Messages
BGP uses just four types of messages. All are sent
reliably through TCP on port 179. It uses a peer-to-
peer model with both BGP speakers being equal.



Table 1. Summary of basic features implemented in the INET Version and Novák’s Version

Features INET Version Novák’s version
Cisco-like configuration ✗ ✓

IPv4 ✓ ✓
IPv6 ✗ ✓

Independent on OSPF ✗ ✓
Initial Prefix Exchange ✓ ✓

UPDATE message with multiple NLRIs ✗ ✗
UPDATE message with Withdrawn routes ✗ ✓

NOTIFICATION Message ✗ ✗
BGP Table ✗ ✗

Start/Stop/Crash Handlers ✗ ✗
TCP Closed Handler ✗ ✓

Interface State Change Handler ✗ ✗
Routing Table Change Handler ✗ ✗

Local Pref Attribute ✗ ✗
MED Attribute ✗ ✗

• OPEN - First message after TCP connection is
established. Announces version of BGP, capa-
bility extensions, and AS number which deter-
mines eBGP or iBGP.

• KEEPALIVE - BGP’s ping-pong mechanism.
• UPDATE - Advertises available prefixes with

their attributes or withdraws prefixes as they
become unavailable.

• NOTIFICATION - Carries information about
detected errors. BGP peering is closed right
after this message is sent.

4. State of the Implementation
As the first step, both available versions of the BGP
model (current INET version and Novák’s version)
were analyzed and their capabilities tested. Both ver-
sion are directly compared in Table 1.

4.1 INET version
The INET version was found to contain a few differ-
ent bugs and dirty workarounds and a lot of missing
features, among which are the following:

1. dependency on the OSPF module;
2. decentralized and unique declarative style of

configuration;
3. support for IPv4 only;
4. missing withdraw route functionality;
5. limited interactivity with the ScenarioManager;
6. missing NOTIFICATION message type.

With this model, the simulation is very limited.
Firstly, one has to learn the specific way of configu-
ration, and even then, only the initial route exchange
between BGP speakers can be observed. No simulation
scenarios can be tested on this BGP implementation

as it lacks the ability to withdraw routes. Some path
selection steps are omitted, popular attributes like MED
are not implemented. Furthermore, because no such
structure like BGP Table is present, switching to a
backup route when the primary route fails is not possi-
ble. The model also lacks the ability to recover after a
link is reconnected, or the ability to be shut down or
started up during the simulation. Because there is a
bug with the TCP module which prevents a simultane-
ous TCP connect operation by two simulation entities,
the simulation introduces increasing delay for each
new connection.

4.2 Novák’s version
A lot of downsides of the INET version were also
observed by Ing. Adrián Novák. In his version, he
created a new configuration scheme that closely fol-
lows Cisco’s configuration, added withdrawn route
functionality, and introduced support for IPv6. While
a lot of the aforementioned problems were resolved,
the resulting code was not merged into INET codebase.
The readability and structure of the code suffered quite
a bit and many of the problems with the INET version
remained. IPv6 support was added by excessive and
unnecessary copying of IPv4 methods without leverag-
ing any of the powers of object-oriented programming.
Advertisements of prefixes of an address-family that
is different than the address-family of the architecture
are also not supported. What was essentially created
was a very hard-to-maintain code with still only very
limited interactivity with the ScenarioManager.

5. OMNeT++ Implementation

The initial goal was to push the Novák version into
a usable state and then create a pull request. But as



<routes>

Advertise 
List

BGP 
Table

BGP 
Routing 
Table

RT

Update 
Base

Update Recalculate
<BgpTable>

<added> 
<removed>

<BgpRoutingTable>

Interface/RT 
Changed

BGP 
Established

TCP 
Closed

Update 
Message 
Received

RemoveUpdate

Start

<routes>

Initialize

config.xml
<network> 

Config 
Reader

Init

<routes>
Update

Check

Check

Update 
Message

Create

Create

Send

Update
1 2 3

4

5

<added> 
<removed>

<routes>

Figure 2. Simplified diagram of the new operation loop of the BGP simulation model. The diagram shows how
the main route data structures interact with each other and the different input events (highlighted in blue) are
processed.

more and more problems with this version became ap-
parent, most of the model had to be rewritten (around
60%) and in the end, the Novák’s version was used
only as a reference with the INET version being used
as a new base. A non-exhaustive list of changes in-
cludes configuration changes, OSPF dependency re-
moval, introduction of IPv6 with the usage of generics
as much as possible, the addition of BGP Table, rewrite
of node’s main operation loop, and addition of multi-
ple mechanisms for handling changes of interfaces or
TCP connections. Highlights of the changes are in the
following subsections.

5.1 Configuration
The new configuration file structure is loosely based
on the Novák’s version [12] which itself is based on
MP-BGP configuration on Cisco devices. It allows for
normal IPv4 configuration, IPv6 configuration, their
combination and even advertisement of IPv4 prefixes
over IPv6 infrastructure or advertisement of IPv6 pre-
fixes over IPv4 intrastructure, which was not possible
in either of the existing versions. Furthermore, the
new configuration allows for interface IP address as-
signments and static routes insertions. The previously
mentioned TCP bug was fixed following a discussion
with INET’s developers and as such, all code related to
the calculation of TCP connect delays could be cleaned
up.

5.2 Support for Multi-Address-Family
Because the old model was not exactly designed and
coded with IPv6 in mind, numerous changes were re-
quired. While code from Novák’s BGP repository is
no doubt functional, it contains a lot of duplicated
code, which, inadvertently and unnecessarily, bloats
the codebase. The goal was to have as little of address-
family specific methods as possible. First, the IPv4 spe-

cific class BgpRoutingTableEntry, which repre-
sents a single BGP route, was changed to utilize the
generic L3Address class instead. This enabled its
usage even for IPv6 routes. Helper methods, which
work with BgpRoutingTableEntry were rewrit-
ten to work with the abstracted address. Additionally,
separate internal structures to store IPv6 routes were
created, but because of the abstaction, no IPv6 specific
methods were needed. OPEN message was extended
by address-family capability field and UPDATE mes-
sage was implemented for IPv6 routes. During the
implementation, a bug in INET Neighbor Discovery
Protocol (NDP) model was discovered and reported to
INET maintainers [16].

5.3 Rewriting the Operation Loop
There were several missing key features of the BGP
protocol that were addressed with the redesign of the
main operation loop. The major issues included:

• Received OPEN messages were not validated.
• BGP Table was missing. Routes that were not in-

stalled in the BGP Routing Table were discarded,
and so they could not be used as a fallback route
if the necessity arised.

• Event handlers for various RT/interface signals
or TCP events were missing, greatly limiting
the interactivity of the model while ignoring the
events of TCP connection.

• Routes were handled individually instead of in
bulk, resulting in unnecessary additional pro-
cessing and generation of redundant UPDATE
messages.

The redesigned operation loop that addresses these
shortcomings is shown in Figure 2. What was essen-
tially created is a chain of consecutive subroutines
(numbered 1 through 5 on the diagram) that takes an



incoming event together with its associated routes, re-
calculates the contents of these internal structures ac-
cordingly, updates the appropriate RT, and notifies
relevant peers about the changes. The context of the
event that triggered the computation is passed through
the chain as well, allowing BGP to branch in different
stages as needed. These stages are as follows:

1⃝ Validation of the Advertise List First, adver-
tiseList structure is populated with prefixes en-
tered by the network command once during node ini-
tialization. When the configuration file parsing process
is complete, every prefix in the advertiseList
structure is processed into BGP route entry and marked
as valid or invalid, depending on whether the prefix
can be exactly matched in the RT (check operation). A
vector of these entries is passed to update BGPTable.
check operation is executed either after the configura-
tion file has been parsed, during the start of the node,
or if a signal notification regarding Interfaces or RT is
received.

2⃝ Update of the BGP table This subroutine takes
a vector of routes as input. Each invalid entry is re-
moved from BgpTable and each valid entry is veri-
fied to be present and added if necessary. The routes
received in the UPDATE messages are processed in the
same way; routes received in UPDATE message are
processed into BGP route entries, while the withdrawn
routes are also marked as invalid. If an active TCP
socket closes, all routes received from that particular
peer are invalidated. With this updated BgpTable,
BgpRoutingTable can be recalculated.

3⃝ Calculation of the BGP Routing Table This
procedure selects only the best route to each desti-
nation. It leaves BgpRoutingTable in sync with
BgpTable and also returns two vectors: one vector
that contains routes removed from the BGP Routing
Table during the computation, and one vector that con-
tains routes newly added to the BGP Routing Table.
Both vectors are used to update the local RT and are
passed to the updateSendProcessmethod, which
creates a base for the update messages.

4⃝ Creation of the Update Base This procedure has
two possible inputs: either it takes the two aforemen-
tioned vectors from the previous stage or it takes the
entire current content of the BGP Routing Table. Its
main purpose is to calculate attributes for each route
and group them accordingly so that as few UPDATE
messages are sent as possible.

5⃝ Sending of the Update Message This procedure
creates and sends the appropriate AF-specific UPDATE

message with the content of the structure created in
the previous stage.

This redesign required a significant rewrite of the
BgpRouter class. To allow the model to receive
events during the simulation, the inheritance hierarchy
of several classes had to be changed and additional
handler methods had to be implemented. After all of
these changes, this new version of the model has all
features listed in Table 1.

6. Testing
Since the majority of the model had been rewritten,
thorough testing was required. Test suites of the pre-
vious model versions included a few different topolo-
gies, but since the models’ support for Scenario-
Manager was fairly limited, usually, only the ini-
tial exchange could be observed and analyzed. With
the model being extended to fully support TCP state
changes, interface state changes, routing table changes
caused by other protocols, and node manipulation by
ScenarioManager, a completely new and much-
extended set of testing scenarios was devised. In order
to provide the tests with additional value, they were
taken in an educational direction.

In a video conference based discussion, a serious
interest in routing tutorials was expressed by INET
developers and OMNeT++ community. It was agreed
to create a set of BGP tutorials that could be published
on INET website. A similar unfinished set for OSPF
and RIP was already created as an inspiration [17]. In
the BGP set of tutorials, each includes an animation
of the simulation, accompanied simulation files, and a
description.

6.1 Methodology
Each tutorial is focused on exactly one feature or as-
pect of BGP implemented in the simulation model. Its
behavior and purpose are explained in detail. Testing
topologies are kept as simple as possible. Every topol-
ogy is compared to a topology built with Cisco BGP
images inside the EVE-ng emulator. Reproduction
package that allows the replay of resulting behavior
is also included. Each tutorial is accompanied by the
following:

1. animated imagery showcasing the topology and
the exchange of the messages;

2. detailed explanation of the showcased feature
and observed behavior;

3. captured traffic (.pcap) and RT changes in the
simulation;

4. captured traffic (.pcap) and RT changes in the
emulator with Cisco images;



5. reproduction package (simulation files and Cisco
configuration files)

A detailed explanation of the testing process can be
found in paper [18] which deals with the standardized
methodology of simulation models.

6.2 Example
The creation of these tutorials is an ongoing process.
A preview of the topics can be found on the INET
website [17] and some of them are already available
on ANSA wiki page [19]. However, this is only tem-
porary version as the goal is to get the tutorials pub-
lished on INET website itself. Detailed example of the
methodology (executed on EIGRP) can be also found
on ANSA wiki page [20].

7. Conclusion
In this paper, I have described the state of the BGP sim-
ulation models for OMNeT++ and I have highlighted
their issues. Furthermore, I have solved the issues by
re-writing a considerable part of the model. Nodes’
main operation loop was completely redesigned and
the interactivity of the model with the simulation was
greatly improved. The resulting implementation com-
bines features of both currently available models. Re-
quirements of the INET maintainers were also taken
into account during the implementation. I have de-
scribed a testing methodology that is used to verify the
model’s functionality which also provides an educa-
tional value to the reader. The first section of the paper
provides the reader with the necessary background
about the basic BGP concepts and the theory behind
Autonomous Systems.

To ensure the best chances for the resulting model
to be merged into the INET code base, multiple code
consultations occurred, which further narrowed the
requirements for the product. A special ‘Hackathon’
session regarding the BGP model was held during the
international OMNeT++ Summit in September 20212.
Bugs in TCP [21] and NDP [16] simulation models
were also reported, with TCP being fixed quickly after
the fact.

Further improvements to the simulation model
could deal with a unified way of handling redistri-
bution. This feature would be, in my opinion, another
big step-up in the quality of the simulation.

8. Acknowledgments
I would like to thank my supervisor Ing. Vladimı́r
Veselý, Ph.D. for his consistent stream of motivation.

2https://summit.omnetpp.org/2021/

References
[1] Santosh Janardhan. Meta: More

details about the october 4 outage.
https://engineering.fb.com/
2021/10/05/networking-traffic/
outage-details/, October 2021. [Online].

[2] Ratul Mahajan, David Wetherall, and Tom Ander-
son. Understanding bgp misconfiguration. ACM
SIGCOMM Computer Communication Review,
32, 09 2003.

[3] Lily Hay Newman. The infrastructure
mess causing countless internet outages.
https://www.wired.com/story/
bgp-route-leak-internet-outage/,
June 2019. [Online].

[4] Geoff Huston. AS65000 BGP Routing Table
Analysis Report. https://bgp.potaroo.
net/as2.0/bgp-active.html. [Online],
Accessed: 2022-04-23.

[5] Geoff Huston. AS131072 IPv6 BGP Table
Data. https://bgp.potaroo.net/v6/
as2.0/index.html. [Online], Accessed:
2022-04-23.

[6] Jeremy Grossmann et al. GNS3. https://
www.gns3.com/. [Online], Accessed: 2022-
04-23.

[7] EVE-NG Ltd. EVE-NG. https://www.
eve-ng.net/. [Online], Accessed: 2022-04-
23.

[8] OpenSim Ltd. Simulator OMNeT++. https:
//omnetpp.org, 2022. [Online], Accessed:
2022-04-23.

[9] Cisco Systems. Packet tracer. https:
//www.netacad.com/courses/
packet-tracer. [Online], Accessed:
2021-07-23.

[10] INET. INET Framework. https://inet.
omnetpp.org, 2022. [Online], Accessed:
2022-04-23.

[11] INET. Initial BGP Implementation. INET com-
mit 9763e6c, 2018. [Online].

[12] Adrian Novak. Modeling and simulation of bgp.
Master’s thesis, Brno University of Technology,
Faculty of Information Technology, 2019.

[13] Mani Amoozadeh. Pull request #381 - Bgp
improvements. https://github.com/
inet-framework/inet/pull/381,
2018. [Online].

https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://www.wired.com/story/bgp-route-leak-internet-outage/
https://www.wired.com/story/bgp-route-leak-internet-outage/
https://bgp.potaroo.net/as2.0/bgp-active.html
https://bgp.potaroo.net/as2.0/bgp-active.html
https://bgp.potaroo.net/v6/as2.0/index.html
https://bgp.potaroo.net/v6/as2.0/index.html
https://www.gns3.com/
https://www.gns3.com/
https://www.eve-ng.net/
https://www.eve-ng.net/
https://omnetpp.org
https://omnetpp.org
https://www.netacad.com/courses/packet-tracer
https://www.netacad.com/courses/packet-tracer
https://www.netacad.com/courses/packet-tracer
https://inet.omnetpp.org
https://inet.omnetpp.org
 https://github.com/inet-framework/inet/tree/9763e6c766205c91873f322eb2a7530b2581fd9a/src/inet/routing/bgpv4
 https://github.com/inet-framework/inet/tree/9763e6c766205c91873f322eb2a7530b2581fd9a/src/inet/routing/bgpv4
https://github.com/inet-framework/inet/pull/381
https://github.com/inet-framework/inet/pull/381


[14] Beichuan Zhang, Vamsi Kambhampati, Daniel
Massey, Ricardo Oliveira, Dan Pei, Lan Wang,
and Lixia Zhang. A secure and scalable internet
routing architecture (sira). 2006.

[15] Patrick Maigron. World - Au-
tonomous System Number statistics.
https://www-public.imtbs-tsp.
eu/˜maigron/RIR_Stats/RIR_
Delegations/World/ASN-ByNb.html.
[Online], Accessed: 2022-04-23.

[16] ANSA. INET NDP Issue. https:
//github.com/inet-framework/
inet/issues/746, 2022. [Online].

[17] INET. Tutorials. https://inet.omnetpp.
org/docs/tutorials/, 2022. [Online].

[18] Vladimı́r Veselý and Jan Zavřel. Quality control
methodology for simulation models of computer
network protocols. CoRR, abs/2109.12854, 2021.

[19] ANSA. EIGRP V&V Result reproduc-
tion package. https://github.com/
ANSA/results-reproduction/wiki/
INET-BGP-Routing-Tutorials, 2022.
[Online].

[20] ANSA. EIGRP V&V Result reproduc-
tion package. https://github.com/
ANSA/results-reproduction/wiki/
OMNeT-Community-Summit-2021, 2021.
[Online].

[21] Rudolf Hornig. INET TCP Issue. https:
//github.com/inet-framework/
inet/issues/92, 2022. [Online].

https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://github.com/inet-framework/inet/issues/746
https://github.com/inet-framework/inet/issues/746
https://github.com/inet-framework/inet/issues/746
https://inet.omnetpp.org/docs/tutorials/
https://inet.omnetpp.org/docs/tutorials/
https://github.com/ANSA/results-reproduction/wiki/INET-BGP-Routing-Tutorials
https://github.com/ANSA/results-reproduction/wiki/INET-BGP-Routing-Tutorials
https://github.com/ANSA/results-reproduction/wiki/INET-BGP-Routing-Tutorials
https://github.com/ANSA/results-reproduction/wiki/OMNeT-Community-Summit-2021
https://github.com/ANSA/results-reproduction/wiki/OMNeT-Community-Summit-2021
https://github.com/ANSA/results-reproduction/wiki/OMNeT-Community-Summit-2021
https://github.com/inet-framework/inet/issues/92
https://github.com/inet-framework/inet/issues/92
https://github.com/inet-framework/inet/issues/92

	Introduction
	History of the BGP Model in OMNeT++
	Basics of BGP
	State of the Implementation
	OMNeT++ Implementation
	Testing
	Conclusion
	Acknowledgments
	References

