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Abstract

This paper proposed a method of 3D reconstruction of scanning electron microscope (SEM) speci-
men. The aim is to explore the possibilities of topography reconstruction of microscopic samples, as
well as to attempt to solve the task using tools already available on conventional scanning electron
microscopes. The proposed solution uses images from a four-segment backscattered electrons
detector as an input to the photometric stereo algorithm. This algorithm exploits the fact, that the
brightness of the image point is dependent on the inclination of the sample surface. Reflectance
maps are used to estimate the inclination in each pixel, creating a map of normal vectors. The map
is then used for topography reconstruction. A novel technique for reflectance map estimation is
proposed. This method is applied to tin samples to remove the sample’s atomic number effects.
The fact that all data are acquired simultaneously allows for fast reconstruction. Usage of already
available and widespread tools eliminate a need for specialized equipment such as Atomic Force
Microscopes.
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In this paper, a photometric stereo method is examined

The knowledge of surface topography and 3D mea- and implemented.

surements is often needed. For example, in the semi-
conductor industry, spatial features’ details can help
to design electronic circuits or to find errors in the
designs. Even though the capabilities of the scanning
electron microscope include the acquisition of many
kinds of data, 3D surface measurement is usually not
one of them.

Multiple approaches to 3D surface measurement
exist. The approaches range from specialized equip-
ment such as Atomic Force Microscope (AFM) [1]
through special procedures like FIB-SEM (FIB - Fo-
cused Ion Beam) tomography [2] to pure software
solutions such as photogrammetry [3]. Each of them
comes with its own share of strengths and weaknesses.

Photometric stereo has been a research subject for
over 40 years [4], but implementation in the SEM
environment did not gain widespread usage. This is
because of the complex calibration of calculation pa-
rameters and the influence of effects like shadowing
and noisiness. This work proposes a new method of
obtaining reflectance maps, which are then used to es-
timate the map of normals of the sample. The map of
normals is used to reconstruct the surface topography.
The proposed solution does not require any specialized
equipment on top of a Scanning Electron Microscope
(SEM) and 4-segment backscattered electrons detector,
the both commonly available on SEM systems.

Accurate reflectance maps are necessary for the
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precise topography reconstruction. The intensity and
the angular distribution of the backscattered electrons
(BSE) depend on the sample’s atomic number, the
inclination of the surface, and the energy of electrons
[5]. On top of that, the distance between detector
and sample is variable. This causes the acquisition
of backscattered electrons with a different solid angle
and elevation angle of the detector (see section 4).
The internal setting of the detector also influences the
resulting image. This work focuses on tin samples
with given offset and gain to remove a few variables
from the solution.

2. Backscattered electrons detector

Many designs of semiconductor detectors exist, one of
which is the 4-segment detector. It consists of four sep-
arate detectors, symmetrically placed around the inci-
dent beam as seen in Figure 1. Each segment captures
backscattered electrons from different spatial locations,
and the signal from each segment can be represented as
an image. The differences in positions of the segments
cause the specimen to “be seen” as if under differ-
ent lighting conditions in the resulting images (Figure
2). The acquisition of all four images is simultaneous,
meaning that only a single scan is required to acquire
data in all four segments. These properties make the
detector ideal for the application of photometric stereo.

Figure 1. Schematic of the BSE detector. Yellow line
in the middle is the electron beam shining on the
sample (red sphere). Some electrons become
backscaterred (“reflected”) from the sample.

3. 3D reconstruction algorithm overview

The basis of the algorithm is the estimation of the
reflectance maps. The reflectance map is defined as
individual brightness values assigned to points in the

Figure 2. Four images of the same sample (eye of the
fly) acquired simultaneously; each image is from a
different segment of the detector. Each cell is
approximately 20 um.

gradient space [4]. The gradient space is first-order par-
tial derivatives of the surface inclination with respect
to the x and y axes. However, because the possible
inclination of the sample surface in SEM is (-90°,90°),
derivatives of inclination near the edge of the spectrum
would approach infinity. This imposes the problem
of the representation of reflectance maps in the soft-
ware. As a solution, the reflectance map is represented
in the discrete “’spherical” space, which has a range
(-90°,90°), and the normal vector [0,0,1] is directly in
the centre. It can be easily imagined as a top-down
view of the illuminated sphere (Figure 4).

This way, the reflectance map can be stored in the
simple 2-dimensional matrix, where a unit normal vec-
tor represents the inclination of the surface as follows:
Assuming normalized image with [0,0] directly in the
middle and borders in range (—1,1), n, and n, are the
same as coordinates in the image. n, can be calculated

as
n,=—y/1—n2—n? (1)

,where the subscript of n represents respective compo-
nent of the vector.

The image is internally approximated via the Lamé
curves (Superellipses) in order to speed up processing
and save resources, as described in section 5.

The reflectance map is unique for each segment,
and in the ideal case, because of the symmetrical dis-
tribution of BSE detector segments, it would be the
same but rotated by 90 degrees. Reflectance maps are
then used to estimate surface normal in each pixel of
the image, and the created map of normal vectors is
used to reconstruct the 3D model. See Figure 3.
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Figure 3. The overview of the algorithm steps. First, the reflectance maps are generated. Then the image of
normal vectors is estimated, and the surface topography is reconstructed.

Figure 4. Reflectance map in “spherical” space.

However, using the normal map to reconstruct sur-
face topography imposes a problem of cumulative er-
ror. The straightforward method would be an integra-
tion of the normals over the whole image. But because
of the noise in the image of normal vectors, every iter-
ation adds a more significant error the further from the
starting point surface patch is.

Several methods have been employed to minimize
the integration error. Most often, a method uses a
least-squares approach. In this work, a grid method
as described in the literature [6] is used. In the be-
ginning, a quadrangular facet for each of the normals
is created. The next phase of the algorithm is itera-
tive and consists of two significant steps called local
shaping and global blending. In local shaping, each
facet is projected onto a plane defined by normal in
the point. Global blending attempts to modify a mesh
surface in a way that satisfies the positions of vertices
in all of the facets and is not discontinuous. The error
of such deformation is calculated by means of least
squares. In this work, the algorithm was modified to

allow for greater deformation of facets with normals
of greater inclination. This modification was done be-
cause tests have shown that measurement accuracy of
normal angle drops with greater inclinations.
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Figure 5. Visualisation of local shaping and global
blending. [6]

4. Calibration of the system

The output of the BSE detector depends on several
variables, which can be divided into two categories.

Properties influencing the output
of backscattered electrons
¢ Inclination of the surface (relative to the elec-
tron beam) - The amount of backscattered elec-
trons increases heavily with greater sample sur-
face inclinations. For example, for a flat alu-
minium specimen with the incident beam at
15 keV with the surface normal parallel to the
electron beam (angle is 0°), approximately 13%
of incident electrons turn to backscattered elec-
trons. At 85° degrees, 70% of incident electrons
become backscattered electrons. At 0°, Lam-
bert’s cosine law can represent the angular dis-



tribution of backscattering. However, at bigger
inclinations, the specular component becomes
much more prominent [7]. See Figure 6.

* Atomic number - The atomic number of the

specimen material significantly affects the backscat-

tered electrons quantity and the angular distribu-
tion. With increasing atomic number, the num-
ber of backscattered electrons increases as well
[5]. The angular distribution is also affected [7].
See Figure 6. This work focuses only on tin
specimens, allowing for omitting this variable
from the solution.

* The energy of the incident beam - Larger ener-
gies cause an increase in the number of backscat-
tered electrons. The angular distribution is af-
fected as larger energy changes the diffuse and
specular component ratio of the resulting emit-
tance. [7]. See Figure 6.

e The beam current - The current influences
number of backscattered electrons but does not
change the ratio of backscattered electrons. Thus,
the image looks brighter for greater currents be-
cause of more detected backscattered electrons.
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Figure 6. Illustration of polar diagrams for different
tilt angles, materials and energies [7].

Properties influencing detection rates
* Solid angle - An important property of the de-
tector is the solid angle Q. It can be used to esti-
mate an overall geometric efficiency [5]. Figure

7 shows that even though the detector D, has a
much more extensive collection area, the solid
angle is similar to that of the D; because of the
distance from the sample.

Incident
beam

Figure 7. Solid angle - Despite detector D, being
much larger than detector Dy, the solid angle Q is the
same due to the D being closer to the sample.

* Distance between the detector and the sample
- SEMs are often designed to have a 4-segment
BSE detector directly under the objective lens
at a fixed distance. The stage with the sample,
however, can move up and down. Because of
the constant collection area of the detector, this
means that the solid angle Q is variable.

Offset and gain of the detector - Variations
in the number of collected BSE are countered
by variable detector parameters that improve
the output signal. These parameters are changed
depending on the sample and the scanning condi-
tions. The gain alters the contrast of the resulting
signal and can be translated into a multiplica-
tion operation on the raw output of the detector.
Offset, on the other hand, affects the brightness
of the signal. It is a constant value added to the
raw output of the detector. In this work, because
of non-trivial dependencies of these parameters
on the environment, constant values of the offset
and gain were used.

Some of these variables can be dealt with relatively
easily. The solid angle of the detector is known and
constant. However, variable working distance and the
energy of the incident beam influence the resulting
image in a way that is difficult to calculate. Because
of these effects, combined with the hardly-predictable
nature of the angular distribution of backscattered elec-
trons, an empirical novel approach was chosen.

A large dataset of tin balls was acquired. Because
spheres contain every surface inclination, they are fea-
sible for approximating reflectance maps. This dataset
contains images taken at different working distances
and electron energies. Subsequently, pixels with a
given value were filtered for each possible value (0-



255). See Figure 8. The mask with filtered pixels
would provide sufficient information to estimate the
normal. However, the accuracy would be restricted
by the resolution of the normal map. Moreover, these
masks would need to be processed thousands of times
while calculating a normal image, which is not efficient
in terms of processing time and space. As a solution,
an approximation of the masks with superellipses is
proposed. For this application, a superellipse can be
defined with five parameters. The superellipse was
fitted to the masks of the dataset. The parameters for
each value of (0-255) were then approximated using a
spline with a set of points, allowing for dynamic gen-
eration of superellipse parameters. The points of the
spline were further approximated to estimate superel-
lipse parameters depending on the properties like the
beam energy and the working distance. An example
of superellipse approximation can be seen in Figure 9.

Figure 8. Reflectance map with highlighted pixels
with the same intensity.

Figure 9. Colored pixel overlayed with superellipses.

5. Calculation of image normals

The algorithm used in this work is a variation of the
algorithm described in the literature [4]. In this form it
is used to estimate the normal vector at certain point.
During the reconstruction it is iterated over the whole
image.

1. One value is extracted from the same place on
each image.

2. A superellipse is determined for each value, ac-
cording to current microscope settings.

3. The points of interest are caclculated for each
superellipse pair. The points of interest are inter-
sections of the resulting shapes or averages of
the closest points in case of no intersection. In
the case of multiple intersections, a point closest
to the average of all points is chosen.

4. Chosen points are averaged, creating a point
representing estimated normal.

Figure 10. Overlayed masks from all maps. Magenta
points are points of interest that were not chosen,
whereas cyan points were chosen. The white point
represents estimated normal.

Here are some examples of the proposed solution.
Even though not everything is made out of tin, the
algorithm still provides a reasonable guess of the 3D
model.



Figure 11. Input images - tin spheres.

Figure 12. Input images - a ridge in the indium wire.

Figure 13. Input images - an eye of the fly.

7. Conclusions

A new method of estimating reflectance maps was in-
troduced. A sketch of a system for topography recon-
struction of tin samples was presented. It was shown
that empirical estimation of reflectance maps is a vi-
able option when some reasonable assumptions are
taken. However, this method is restricted to the avail-
able microscope-detector configuration on which it
was developed. Usage of the different detector will
require recalibration of the base reflectance maps.

Future research could broaden this solution to more
materials. With a dataset containing enough materi-
als, it would be possible to extrapolate knowledge on
other materials based on atomic numbers. Shadowing
artefacts are not taken into account. Even though pho-
tometric stereo is an excellent tool for estimation, more
work is needed to ensure topography reconstruction to
absolute levels.
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