
http://excel.fit.vutbr.cz

A Decision Procedure For Strong-Separation Logic
Tomáš Dacı́k*

Abstract
Separation logic (SL) is one of the most successful tools for verification of programs that manipulate
dynamically allocated memory. Its expressive power comes at a cost of undecidability when several
of its features, namely negations, inductive predicates describing data structures and separating
implications are combined. To circumvent this problem, the recently introduced strong-separation
logic (SSL) uses a stricter definition of the semantics, making it decidable, while remaining suitable
for verification. However, there is currently no implementation of a decision procedure for SSL. In
this work, we propose a decision procedure for SSL based on a translation to first-order formulae
that can be later solved by a specialized solver. Our preliminary experimental results show that
our approach can effectively solve formulae obtained from verification tools based on SL and also
outperform existing decision procedure based on similar translation.

Keywords: Logic — Separation logic — Decision procedure

Supplementary Material: Downloadable Code
*xdacik00@stud.fit.vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

In recent years, logic proved to be a very useful tool
in many approaches to formal verification of software
and hardware. Formulae in various logics can be used
not only for specification of the correct behavior but
also as a backend technology in tools that attempt
to verify the specification. Prominent examples are
propositional logic and satisfiability modulo first-order
theories (SMT). SMT solvers underwent rapid devel-
opment and can be used, for example, to discharge
preconditions generated by deductive verification tools
or for automatic generation of test cases for real life
programs.

Another category are non-classical logics that can
express some aspects of computer programs. An ex-
ample is separation logic (SL) [1] that is the subject of
this work. In general, it can express properties about
shared resources and their disjointness while allowing
a modular reasoning. In the most common setting, the
shared resource is computer memory – SL can express
properties such as that a heap contains two disjoint
null-terminated linked lists from memory locations x
and y. A common problem of heap properties is alias-
ing – can it be the case that x and y alias, and heap

does therefore contain a single list only?

Separation logic solves this problem by introduc-
ing two spatial connectives – the separating conjunc-
tion (denoted by ∗, and pronounced “and separately”)
and the separating implication (denoted as −∗ , and
often called “magic wand”). Informally, formula ϕ ∗ψ

states that the heap can be split into two disjoint parts
such that the formula ϕ is satisfied in the first and ψ

is satisfied in the second. For example, the formula
x 7→ z∗ y 7→ z informally states that the heap contains
two pointers, and the semantics of the separating con-
junction makes sure that their source locations x and y
are distinct.

Another ingredient of SL are inductive predicates
describing data structures such as lists or trees. Some
variants of SL allow arbitrary user-defined predicates,
but in this work, we assume a single fixed inductive
predicate ls(x,y) representing acyclic single-linked
lists. As shown by Demri [2], a separation logic that
combines all previously mentioned components and
boolean connectives is under the classical semantics
undecidable. Most verification tools therefore do not
work with the magic wand which is, however, neces-
sary to succinctly express even such a trivial property

http://excel.fit.vutbr.cz
https://github.com/TDacik/Astral
mailto:xdacik00@stud.fit.vut.cz

1 : x 2 3 4 5 : y 0 : nil

Figure 1. A stack-heap model with s = {x 7→ 1,y 7→ 5,nil 7→ 0} and h = {1 7→ 2,2 7→ 3,3 7→ 4,4 7→ 5,5 7→ 1}.
The model is equivalent to a model where the red-marked locations 2 and 3 (more precisely any two of 2, 3
and 4) are removed (there is no SSL formula that can distinguish those models). It holds (s,h) |= ls(x,y)∗y 7→ x.

as “location x is allocated”. The magic wand also nat-
urally appears in so-called bi-abductive analysis [3],
where it is usually only approximated.

To tackle this, Pagel and Zuleger introduced a so-
called strong-separating semantics under which the
mentioned fragment becomes decidable. In [4], they
introduce a concept of abstract memory states (a finite
abstraction over possibly infinite sets of models) and
a decision procedure based on their enumeration that
runs in polynomial space. However, there is no im-
plementation of their decision procedure. This work
is focused on design and implementation of another
decision procedure for SSL. Rather than performing
an enumeration, we perform a translation to first-order
formulae that can be later solved by an SMT solver.

Related work. A translation of SL to SMT was
first time proposed in [5] and [6] for a fragment with
lists and trees, respectively. The approach uses an in-
termediate logic that is later translated to SMT. Our
approach is, however, more close to the approach pro-
posed in [7] which establishes a small-model prop-
erty for separation logic with data predicates and per-
forms a direct translation implemented in a tool called
SLOTH. A similar translation was designed in [8] for
SSL with data but not implemented. All those works
consider only such fragments of SL where boolean
connectives cannot appear under separating conjunc-
tion, and the magic wand cannot appear at all. A
fragment with the magic wand, arbitrary combinations
of boolean and spatial connectives, but no inductive
predicates is supported by the SMT solver CVC4 for
which it implements a specialized theory solver [9].
There also exist solvers for SL with general inductive
predicates but their discussion is out of the scope of
this paper.

2. Strong-Separation Logic

In this section, we introduce the notation used in this
paper and formally introduce strong-separation logic.
We also briefly discuss its properties that are essen-
tial for an effective implementation of our decision
procedure. The section is based on [4] where those
properties are described in details and formally proved.

2.1 Preliminaries
We use predicate distinct(x1, ...,xn) to denote that all xi

are pairwise different. We write f : X ⇀ Y to denote
a partial function from X to Y , dom(f) to denote its
domain, and f (x) =⊥ if f is undefined for x.

Let G = (V,−→) be an oriented graph. A path π is
a sequence of vertices ⟨x1,x2, ...,xn⟩ such that for all
1 ≤ i < n, it holds that xi −→ xi+1. A path π is simple
if it does not contain any vertex more than once. All
simple paths are therefore acyclic. The domain of a
path π is the set dom(π) = {x1,x2, ...,xn−1} and the
length of the path is defined as |π|= |dom(π)|.

2.2 Syntax
Let Var be an infinite set of variables with a distin-
guished variable nil ∈ Var. We consider a quantifier-
free fragment of separation logic given by the follow-
ing grammar where x,y ∈ Var:

ϕatom ::= x = y | x ̸= y | x 7→ y | ls(x,y)
ϕ ::= ϕatom | ϕ ∗ϕ | ϕ −⊛ ϕ

| ϕ ∧ϕ | ϕ ∨ϕ | ϕ ∧¬ ϕ | ¬ϕ

An atomic formula ϕatom is either an equality x = y,
a disequality x ̸= y, a points-to assertion x 7→ y, or a
list-segment predicate ls(x,y). Full SSL is obtained
by allowing an arbitrary combination of boolean con-
nectives, separating conjunction and septraction (−⊛),
which is a dual connective to the magic wand. In this
work, we will focus on a positive fragment of SSL that
does not allow negation, and requires that each septrac-
tion has a positive polarity (i.e., that it lies under an
even number of negations). This intuitively means that
septractions are used only for an existential quantifica-
tion over heaps. In the positive fragment, the so-called
guarded negation ϕ ∧¬ ψ1 can still be used. We use
vars(ϕ) to denote the set of all variables of ϕ .

2.3 Stack-Heap Models
We assume an infinite set of heap memory locations
denoted as Loc. SSL is interpreted over stack-heap
models (s,h), where stack is a finite partial function
s : Var ⇀ Loc and heap is a finite partial function

1A formula ϕ ∧¬ ψ is semantically equivalent to the formula
ϕ ∧¬ψ , but we rather treat it as a standalone binary connective.

(s,h) |= x = y iff s(x) = s(y) and dom(h) = /0

(s,h) |= x ̸= y iff s(x) ̸= s(y) and dom(h) = /0

(s,h) |= x 7→ y iff h = {s(x) 7→ s(y)}
(s,h) |= ls(x,y) iff dom(h) = /0 and s(x) = s(y) or there exist n ≥ 1, l0, ..., ln such that

distinct(ℓ0, ..., ℓn) and h = {ℓ0 7→ ℓ1, ..., ℓn−1 7→ ℓn} and s(x) = ℓ0,s(y) = ℓn

(s,h) |= ϕ1 ∧ϕ2 iff (s,h) |= ϕ1 and (s,h) |= ϕ2

(s,h) |= ϕ1 ∧¬ ϕ2 iff (s,h) |= ϕ1 and (s,h) ̸|= ϕ2

(s,h) |= ϕ1 ∨ϕ2 iff (s,h) |= ϕ1 or (s,h) |= ϕ2

(s,h) |= ¬ϕ iff (s,h) ̸|= ϕ

(s,h) |= ϕ1 ∗ϕ2 iff ∃h1,h2. h = h1 ⊎s h2 and (s,h1) |= ϕ1 and (s,h2) |= ϕ2

(s,h) |= ϕ1 −⊛ ϕ2 iff ∃h1. (s,h1) |= ϕ1,h⊎s h1 ̸=⊥ and (s,h⊎s h1) |= ϕ2

Figure 2. The semantics of strong-separation logic.

h : Loc ⇀ Loc. We further require that the stack of
each model maps nil to some location that is not in
the domain of its heap, i.e., s(nil) ̸= ⊥ and s(nil) /∈
dom(h).

As demonstrated in Figure 1, a stack-heap model
(s,h) can be represented as an oriented graph where
vertices are heap locations and edges represent heap
pointers. To capture also the stack, each vertex is la-
beled by variables that are mapped to it. In the rest of
the text, we identify the model and its graph represen-
tation. We use locs(h) = dom(h)∪ img(h) to denote
all heap locations of the model. A location ℓ is called
allocated if ℓ ∈ dom(h). We further call ℓ named if
at least one variable is mapped to it, and anonymous
otherwise.

2.4 Semantics
The definition of the semantics of separation logic is
based on a notion of disjointness of two heaps. In
classical SL, heaps h1 and h2 are disjoint if their do-
mains are disjoint. The strong-separating semantics
adds another condition that locations shared by both
heaps have to be named. The disjoint union of heaps
wrt. a stack s is then defined as:

h1 ⊎s h2 =

h1 ∪h2 if dom(h1)∩dom(h2) = /0

∧ locs(h1)∩ locs(h2)⊆ img(s)
⊥ otherwise

Now, we can define the semantics of SSL as in
Figure 2. We use the so-called precise semantics un-
der which (dis)equalites are satisfied on empty heaps
only. Similarly, points-to assertions are satisfied only

by a single pointer from x to y. A list-segment pred-
icate ls(x,y) is satisfied either by an empty heap if
s(x) = s(y) or by a non-empty sequence of pointers
from x to y such that all locations in the sequence are
distinct. Lists therefore cannot be cyclic 2 or lasso-
shaped.

The semantics of boolean connectives is defined
in the usual way. The semantics of spatial connectives
is defined using the operator ⊎s. We can further define
the empty heap predicate, the magic wand connective,
and classical boolean constants as syntactic sugar:

emp≜ nil= nil false≜ emp∧¬ emp

ϕ −∗ ψ ≜ ¬(ϕ −⊛ ¬ψ) true≜ ¬false

Example 2.1. Let ϕ1 ≜ x 7→ y ∗ x 7→ z. The formula
ϕ1 is unsatisfiable because it requires the location x to
be allocated in both sub-heaps, which is forbidden by
the semantics of the separating conjunction. On the
other hand, the formula ϕ2 ≜ x 7→ y∗ z 7→ y is satisfi-
able. Notice that ϕ2 implicitly asserts that locations
represented by x and z differs.

Example 2.2. Let ϕ3 ≜ (x 7→ nil)−⊛ true. The formula
is satisfied by models that can be extended by a pointer
from x to nil, i.e., by models that do not allocate x. This
formula can be also expressed using the magic wand as
¬(x 7→ nil−∗ false) but cannot be succinctly expressed
without the magic wand or septraction combined with
negation.

2A cyclic list can be defined by the formula ls(x,y)∗ y 7→ x.

Unlike in the classical SL, satisfiability and entail-
ment are defined wrt. a set of variables x ⊆ Var. A
formula ϕ with vars(ϕ)⊆ x is satisfiable wrt. x if there
exists a model (s,h) |= ϕ such that dom(s) = x. A for-
mula ϕ entails a formula ψ wrt. x, written ϕ |=x ψ , if
each model of ϕ with dom(s) = x is also a model of
ψ . Validity of an entailment can be reduced to unsat-
isfiability of formula ϕ ∧¬ ψ using classical boolean
equivalences.

2.5 Small Models and Footprints
In the positive fragment, semantics of SL and SSL
coincide and one can therefore consider SSL a “back-
ward compatible” extension of positive SL. This also
means that for a satisfiable positive formula, it is al-
ways sufficient to set x = vars(ϕ) and we can therefore
ignore the x component of the input when dealing with
positive formulae.

Moreover, a satisfiable positive formula ϕ has a
model of size at most 2 · vars(ϕ). The idea behind is
that SSL cannot speak about lengths of lists greater
than 2 without using additional variables. This is
sketched in Figure 1 where two red locations can be re-
moved to obtain an equivalent model. In our decision
procedure, this can be utilized to work with a finite
domain of locations.

The semantics of spatial operators involves quan-
tification over sub-heaps whose translation can be po-
tentially very expensive. In [5] and [8] this problem is
prevented by establishing a so-called unique footprint
property. It states that for each positive formula ϕ

and each fixed model (s,h), the following holds: if
(s,h) |= ϕ ∗ true, then there exists the unique set F
such that (s,h|F) |= ϕ . This set is called as the unique
footprint of ϕ in (s,h). When translating a separating
conjunction, it is not necessary to consider all sub-
heaps, but only sub-heaps induced by the footprints
of its arguments (if the footprint is unique, than its
induced heap is also unique). For the example, the
model in Figure 1 satisfies a formula ls(y,x)∗ true and
the footprint of a subformula ls(y,x) is determined as
a domain of simple path (such a path is always unique)
from y to x which is {5}.

The unique footprint property does not longer holds
when a disjunction is added to the logic, but if fortu-
nately still holds that there are only polynomially many
footprints that need to be verified to determine satisfia-
bility of a separating conjunction.

3. Decision Procedure for Positive SSL
In this section, we propose a new decision procedure
for the positive SSL. Rather than performing a custom

enumeration as in [4], we try to leverage capabilities
of modern SMT solvers and propose a translation to
SMT inspired by [8]. We extend a fragment that can
be translated by considering septractions and arbitrary
combination of boolean and spatial operators. We also
have an extension for the full SSL that needs an addi-
tional treatment of quantifiers, but do not discuss it in
this paper for space reasons. As we already mentioned,
semantics of SL and SSL correspond on the positive
fragments. Our decision procedure is therefore appli-
cable for SL as well. Our work is therefore also a
contribution in the context of SL that, despite theoret-
ical results, still lacks tools fully supporting boolean
operators. This problem was recently addressed in
[10] where the authors need a support for disjunction
when translating quantitative separation logic into the
classical one. Finally, we also propose several ways
to optimize encoding of list-segment predicates com-
pared to [8].

3.1 Translation to SMT

The main idea of the decision procedure is to translate
an input formula to an equisatisfiable formula in a
combination of theories of finite sets and arrays – the
sets are used to encode the domains of heaps, while
arrays are used to encode their mappings. In the rest of
this section, we fix an input formula ϕ and its location
bound n. By default, we can use the general bound
2 ·vars(ϕ), later in this section we will show how this
bound can be improved.

Utilizing the small model property, we can restrict
the infinite domain of locations Loc to its finite sub-
set L = {ℓ1, ℓ2, ..., ℓn} consisting of n distinct location
constants. Because SSL formulae cannot distinguish
isomorphic models, it does not matter which particular
subset we choose. In the translation, this is ensured by
the following formula3:

ϕ
card
n ≜ ∃ℓ1, ..., ℓn. distinct(ℓ1, ..., ℓn)∧∀x.

∨
1≤i≤n

x = ℓi

Because all functions are total in SMT, we need to
encode partial heap functions by two components –
an array h that encodes the mapping and a set F that
encodes the domain. The stack image of a variable x is
encoded simply by a constant symbol x. A model M
of the translated formula can then be used to obtain a

3In many-sorted first-order logic used by SMT solvers, this
constraint can be replaced by declaring L as a finite sort of cardi-
nality n.

• The translation for an atomic formula ϕ:

Tn(x = y) : ϕ̃ ≜ x = y A ≜ Fϕ = /0

Tn(x ̸= y) : ϕ̃ ≜ x ̸= y A ≜ Fϕ = /0

Tn(x 7→ y) : ϕ̃ ≜ h[x] = y A ≜ Fϕ = {x}
Tn(ls(x,y)) : ϕ̃ ≜ reachn(x,y) A ≜ pathn(Fϕ ,x,y)

• The recursive translation of a binary connective ψ1 ▷◁ ψ2. We use (ψ̃i,Ai) and Fi to denote the translation
of ψi and the footprint of ψi, respectively:

Tn(ψ1 ∧ψ2) : ϕ̃ ≜ ψ̃1 ∧ ψ̃2 ∧F1 = F2 A ≜A1 ∧ A2 ∧ F = F1

Tn(ψ1 ∧¬ ψ2) : ϕ̃ ≜ ψ̃1 ∧ (¬ψ̃2 ∨ F1 ̸= F2) A ≜A1 ∧ A2 ∧ F = F1

Tn(ψ1 ∨ψ2) : ϕ̃ ≜ (ψ̃1 ∧F = F1)∨ (ψ̃2 ∧F = F2) A ≜A1 ∧ A2 ∧ (F = F1 ∨F = F2)

Tn(ψ1 ∗ψ2) : ϕ̃ ≜ ψ̃1 ∧ ψ̃2 ∧F1 ∩F2 = /0 A ≜A1 ∧ A2 ∧ F = F1 ∪F2

Tn(ψ1 −⊛ ψ2) : ϕ̃ ≜ ψ̃1[hϕ/h] ∧ ψ̃2[hϕ/h] ∧ F1 ⊆ F2 A ≜A1[hϕ/h] ∧ A2[hϕ/h] ∧ F = F2 \ F1

∧ ∀x ∈ F. h[x] = hϕ [x]

Figure 3. The translation of an SSL formula to first-order logic.

stack-heap model of the input formula as follow:

s(x) =

{
xM if x ∈ x
⊥ otherwise

h(ℓ) =

{
hM[ℓ] if ℓ ∈ FM

⊥ otherwise

The translation is represented by a function T (ϕ,n)
that takes an input formula ϕ and calls an auxiliary
function Tn(ϕ) defined in Figure 3 that performs a re-
cursive translation with the given bound n. In each
step, the translation Tn(ϕ) produces a pair (ϕ̃,A). The
first component is called the semantics and it repre-
sents constraints on the stack and heap implied by the
formula, such as two variables are equal or the heap
contains a pointer. Those constraints may rely on aux-
iliary symbols introduced during the translation. The
intended meaning of those auxiliary symbols is en-
sured by the second component A called axioms. The
main role of the axioms is to ensure that a symbol Fψ

for each subformula ψ is interpreted as its footprint.
After the translation is finished, those components are
combined into a final formula – a conjunction of the
axioms, the semantics and three additional constraints
that (i) connects the footprint of whole ϕ to the domain
of then heap, (ii) defines the cardinality of the location
domain and (iii) ensures that nil is not allocated:

T (ϕ,n)≜ let (ϕ̃,A) = Tn(ϕ) in

ϕ̃ ∧ A ∧ F = Fϕ ∧ ϕ
card
n ∧ nil /∈ F

As already mentioned, the axioms make sure that
all footprints are defined correctly (therefore they are
computed separately so they are never negated) and
the semantics checks whether a formula holds or not.
Both equality and dis-equality can be satisfied only
on the empty footprint and the translation of their se-
mantics is straightforward. Similarly for a points-to
predicate x 7→ y that can be satisfied only on an a sin-
gleton footprint {x}. A list-segment predicate ls(x,y)
can be satisfied only on a simple path from x to y if
there exists such a path. How those properties are
translated is explained in Section 3.2.

The translation of the conjunction expresses that
both of its operands are satisfied on an equal footprint.
Similarly, the translation of the guarded negation ex-
presses that the first operand is satisfied while the sec-
ond is not – either its semantics does not hold or its
footprint does not match. In the case of the disjunction,
at least one of its operands has to be satisfied on the
correct footprint. Notice that in this case, we cannot
say which footprint will be used and an SMT solver
therefore has to guess the footprint of the disjunction.
Finally, the separating conjunction requires that both
of its operands are satisfied on disjoint footprints, the
footprint of the separating conjunction itself is then
the union of footprints of its operands.

The translation of the septraction is more involved.
For each septraction ϕ ≜ ψ1 −⊛ ψ2 we need to intro-
duce a fresh heap hϕ that is used to find a model of
ψ1 and ψ2 such that a footprint of ψ1 is contained in a

Semantics:

ϕ̃1 ≜ h[x] = y

ϕ̃2 ≜ h[y] = z

ϕ̃3 ≜ ϕ̃1 ∧ ϕ̃2 ∧ F1 ∩F2 = /0

ϕ̃4 ≜ reach2(x,z)

ϕ̃5 ≜ ϕ̃3 ∧ (¬ϕ̃4 ∨ F3 ̸= F4)

∧¬5

∗3 ls(x,z)4

x 7→ y1 y 7→ z2

Axioms: Auxiliary predicates:

A1 ≜ F1 = {x}
A2 ≜ F2 = {y}
A3 ≜ A1 ∧ A2 ∧ F3 = F1 ∪F2

A4 ≜ path2(F4,x,z)

A5 ≜ A3 ∧ A4 ∧ F5 = F3

reach2(x,z)≜ x = z ∨ h[x] = z ∨ h2[x] = z

path2(F4,x,z)≜
(
¬reach2(x,z) ∧ F4 = /0

)
(no path)

∨
(
x = z ∧ F4 = /0 ∧ z /∈ F4

)
(length 0)

∨
(
h[x] = z ∧ F4 = {x} ∧ z /∈ F4

)
(length 1)

∨
(
h2[x] = z ∧ F4 = {x,h[x])} ∧ z /∈ F4

)
(length 2)

Final formula:
T(ϕ,2) ≜ ϕ̃5 ∧ A5 ∧ F = F5 ∧ nil /∈ F ∧ ϕ

card
5

Figure 4. An example of the translation for a formula ϕ ≜ (x 7→ y∗ y 7→ z)∧¬ ls(x,z).

footprint ψ2 (i.e., that their difference is well-defined).
The introduction of the fresh heap is ensured by substi-
tuting hϕ for the currently used heap h in all previously
computed semantics constraints and axioms. The new
axiom makes sure that h and hϕ equals on the footprint
of the septraction which is the difference of footprints
of its operands. In other words, an SMT solver has to
find a model of operands of the septraction such that
the first one can be “septracted” from the second one –
the resulting heap is then propagated as a model of the
septraction itself.

3.2 Translation of List-Segment Predicates
To translate list-segment predicates, we use the fact
that edges are defined by a total function in SMT en-
coding. Therefore, there exists a path from x to y iff
there exists 0 ≤ i < n such that hi[x] = y (where an
expression hi[·] denotes an i-times iterated read from
the array h and h0[x] = x). This can be directly turned
into a definition of bounded reachability parametrised
by n:

reachi
n(x,y)≜ hi[x] = y

reachn(x,y)≜
∨

0≤i<n

reachi
n(x,y)

To axiomatize footprints of lists, we further define a
predicate reachable<i

n (L,x) that asserts that L is a set
of all locations reachable from x in less than i steps.

Clearly, L contains all locations h j[x] where j < i:

reachable<i
n (L,x)≜

{
L = /0 if i = 0
L = {x, ...,hi−1[x]} if i > 0

Finally, we will define a predicate pathn(F,x,y) that
ensures that a footprint F is interpreted as a domain of
simple path from x to y:

pathn(F,x,y)≜
∨

0≤i<n

(
reachi

n(x,y)

∧ reachable<i
n (F,x) ∧ y /∈ F

)
∨

(
¬reachn(x,y) ∧ F = /0

)
The main idea is to make a case distinction over

all possible lengths of paths. We have to also make
sure that the path is simple, this is ensured by adding
a constraint y /∈ F to all clauses – every path that is
not simple has to be an extension of the unique simple
path and therefore its domain will contain y. The last
clause of the definition handles the case when there is
no path from x to y, in such a case semantics of the
list-segment predicate is not satisfied and we do not
care about interpretation of its footprint and simply
assert it to be an empty set.
Complexity. If the input formula is positive, then
its translation is quantifier-free (the only quantifier in
the translation of the septraction can be rewritten us-
ing enumeration) and has a polynomial size (precisely

O(n3)). Because the theory of sets can be reduced to
the extended theory of arrays (a set is represented by
an array mapping elements to boolean values, and oper-
ations over sets are translated using array combinators
that point-wise apply some function to a tuple of ar-
rays) which is decidable in NP, our decision procedure
also runs in NP for positive formulae.

3.3 Example of Translation
To give a better intuition how our translation works, we
will demonstrate it on checking validity of an entail-
ment x 7→ y∗y 7→ z |= ls(x,z). Note that the entailment
is not valid because its left-hand side can be satisfied
with a cycle of two pointers which does not satisfy
acyclicity required by the list-segment predicate. The
entailment can be reduced to checking whether a for-
mula ϕ ≜ (x 7→ y∗ y 7→ z)∧¬ ls(x,z) is unsatisfiable.

The whole translation is demonstrated in Figure 4.
Because we distinguish sub-formulae by their identi-
fiers, the figure also shows how identifiers are assigned
to each subformula represented by a node in AST of
the formula. For simplicity, we assume the precise
location bound for a minimal model which is 2.

Notice in particular the definition of the predicate
path2. In a model containing pointers x 7→ y and y 7→ z
such that s(x) = s(z) there would be multiple paths
from x to z, e.g., ε or ⟨x,y,z⟩. The additional constraint
that z /∈F4 ensures that only the clause that corresponds
to the simple path (namely the clause named length 0)
is satisfied. Therefore, the top-level guarded negation
is satisfied because footprint F3 (which is always equal
to {x,y}) is not equal to the footprint F4 (which is
empty).

3.4 Bounds on Number of Locations and List
Lengths

The size of the translated formula is dominated by
encoding the list-segment predicates where the size of
their encoding depends on the considered number of
locations. The bound established in Section 2 is not
tight in many cases and can be significantly improved.
However, in many cases, this is still not enough, and
therefore we also compute a so-called list bound for
each list-segment predicate. This bound is an interval
[m,n] such that it is enough to consider lists of length
from the interval only.

We first compute three relations, that for each pair
of variables (x,y), tell us which equalities, disequali-
ties and pointers hold in every model of ϕ . We denote
those must-relations by x⃝= y, x⃝̸= y, and x⃝7→ y respec-
tively. The location bound can be refined by replacing
the set of variables x by its partition by the relation
⃝=. We can further subtract one for each equivalence

class x that is guaranteed to have a named successor:

bound(ϕ) = 2 · |x/⃝=|− |{x ∈ x/⃝= | ∃y. x⃝7→ y}|

The list bound of the predicate ls(x,y) can be com-
puted using a must-points-to relation and sets of must-
allocated variables that can be computed for each sub-
formula of ϕ . For space reasons, we describe our
approach on two examples only.

Example 3.1. The entailment x 7→ y∗ y 7→ z |= ls(x,z)
can be reduced to unsatisfiability of the following for-
mula (x 7→ y ∗ y 7→ z)∧¬ ls(x,z). From this formula,
we can derive that each of its models contains pointers
from x to y and from y to z, moreover, locations x and y
will always be distinct. However, we cannot derive
any must-equality and the location bound is therefore
n= 2 · |vars(ϕ)|−|{x,y}|= 4. The list bound for pred-
icate ls(x,z) is [2,2] because must pointers x⃝7→ y and
y⃝7→ z fix the shape of the list to the exact length 2.

Example 3.2. For the formula ϕ ≜ ls(x,y)∗ ls(y,z)∗
y ̸= z we can use information about must-allocated
variables to compute the list bounds for the predicate
ls(x,y) to be bound(ϕ)−1. This is because the loca-
tion y is surely allocated in list ls(y,z), and therefore
cannot be allocated in the second list ls(x,y).

4. Implementation and Experiments
The proposed decision procedure is implemented in
a prototype tool called ASTRAL. ASTRAL is written
in the OCaml programming language and publicly
available under MIT license4. It currently uses SMT
solver Z3 [11] as the backend.

We have evaluated ASTRAL on a benchmark from
SL-COMP5, a competition of solvers for separation
logic. We performed experiments on two categories,
namely QF SHLS SAT and QF SHLST ENTL, i.e.,
satisfiability and entailment of quantifier-free symbolic
heaps with lists, respectively. In our logic, a formula
ψ is a symbolic heap if it has the form ∗ψi

6 where
each ψi is an atomic formula. Since both categories
are contained in the positive fragment, their semantics
correspond to the strong-separating semantics. All ex-
periments were conducted on a machine with 2.5GHz
Intel Core i5-7300HQ processor and 16 GB RAM,
running Ubuntu 18.04. The time limit was set to 60
seconds in all experiments.

4https://github.com/TDacik/Astral
5https://sl-comp.github.io/
6In classical semantics, symbolic heaps have form Π∧Σ where

Π is conjunction of (dis)equalities and Σ is separating conjunction
of spatial predicates. This definition can be easily converted to
ours by replacing all conjunctions with separation conjunctions.

https://github.com/TDacik/Astral
https://sl-comp.github.io/

Table 1. The summary of experiments on SL-COMP benchmarks. All times are in seconds (the timeout is 60 s).

ASTRAL ASTERIX
Category Formulae Total time Max. time Timeouts Total time Max. time Timeouts

QF SHLS SAT 110 11.92 0.57 0 0.4565 0.0057 0
QF SHLS ENTL (random) 210 758.15 - 78 0.8636 0.0058 0
QF SHLS ENTL (verif. conditions) 86 10.37 2.64 0 0.3362 0.0056 0

Figure 5. The comparison of ASTRAL and SLOTH

on formulae from the category QF SHLS ENTL
obtained from verification tools. Only the time of
an SMT solver call is measured (timeout is 60 s).

Figure 6. The comparison of ASTRAL and
SLOTH on randomly-generated formulae from the
category QF SHLS ENTL . Only the time of an
SMT solver call is measured (timeout is 60 s).

Notice that the symbolic heap fragment is only a
small subset of our logic, in fact, our decision proce-
dure is even sub-optimal for this fragment, since both
satisfiability and entailment can be solved in (deter-
ministic) polynomial time [12]. Therefore, we do not
expect to perform better than solvers specialized for
symbolic heap fragment. However, we can still use this
fragment to compare against other decision procedures
and to evaluate the impact of our heuristics.

The results are summarized in Table 1 and com-
pared with the tool ASTERIX [13] that won the last
edition of SL-COMP in both categories. ASTRAL

can solve all satisfiability problems very quickly, but
not as fast as ASTERIX. However, notice that run-
ning times for single formulae are often so low that
side aspects like implementation language can make
a big difference. On entailment problems, ASTRAL

times out roughly in one third of all cases. All of
them are formulae that are randomly generated and
contain many list predicates (up to 20). On a subset
of this category representing real-life entailment prob-
lems (usually containing less than 5 list predicates)
ASTRAL performs significantly better.

We also compared ASTRAL with SLOTH which
uses a very similar translation but without some of

our optimizations. The results are given in Figure 5
and Figure 6 for verification conditions and randomly-
generated formulae, respectively. Because SLOTH is
implemented in Python, we only compare the time
consumed by the Z3 solver. When the overall time is
considered, the results are even better for our solver
because all translation optimizations such as bound
computation takes only negligible time, while SLOTH

usually spends several seconds on translation.

While differences for verification conditions are
usually in fractions of seconds, there are three cases
when SLOTH times out even for those simple formulae
– this could be a complication for its employing in a
verification tool that can make many of such queries
when analysing a program. For randomly generated
formulae, the difference is more visible. ASTRAL is
able to solve 52 formulae that are too complicated
for SLOTH. Our further experiments show that the
computation of list-length bounds helps in many cases,
but even when it is turned off, ASTRAL can still solve
formulae that SLOTH cannot. This suggests that our
translation of list-segment predicates can scale better
with the growing number of list-segment predicates.

5. Conclusions
We presented a decision procedure for strong-separation
logic based on a translation to SMT. While the idea
of such a translation is not new, we have significantly
extended the fragment that can be translated by adding
a support for septractions and allowing arbitrary com-
bination of boolean and spatial connectives. We have
also developed a new method of decreasing sizes of
encoded list-segment predicates. We performed exper-
iments on two restricted fragments of our logic that
show that our improvements indeed significantly help
to reduce the running time. Our decision procedure
cannot beat specialized solvers for those fragments,
but can outperform existing translation-based solver.
Our implementation can also effectively solve all real-
life formulae originating from verification tools based
on separation logic.

Our future work will focus on experiments on for-
mulae of full SSL (including septractions and/or magic
wands) and investigation of how SSL can be used in
program verification, for the example, in bi-abductive
analysis. Another research direction can focus on ex-
tending expressibility of our logic, e.g., by adding
predicates describing more complex data structures.

Acknowledgements
I would like to thank my supervisor Tomáš Vojnar for
his help. Further, I would like to thank Florian Zuleger
and Adam Rogalewicz for consultations, and to all
members of the VeriFIT research group for an inspiring
working environment. I would also like to thank Bára
and Jakub for making an awesome ASTRAL’s logo.

The work was supported by the H2020 ECSEL
project Arrowhead Tools.

References
[1] John Reynolds. Separation logic: A Logic for

Shared Mutable Data Structures. Proceedings -
Symposium on Logic in Computer Science, pages
55– 74, 02 2002.

[2] Stéphane Demri, Étienne Lozes, and Alessio
Mansutti. The Effects of Adding Reachability
Predicates in Propositional Separation Logic. In
Christel Baier and Ugo Dal Lago, editors, Foun-
dations of Software Science and Computation
Structures - 21st International Conference, FOS-
SACS 2018. Springer, 2018.

[3] Cristiano Calcagno, Dino Distefano, Peter
O’Hearn, and Hongseok Yang. Compositional
Shape Analysis by Means of Bi-Abduction. J.
ACM, 58:26, 01 2011.

[4] Jens Pagel and Florian Zuleger. Strong-
separation logic. ACM Trans. Program. Lang.
Syst., nov 2021.

[5] Ruzica Piskac, Thomas Wies, and Damien Zuf-
ferey. Automating Separation Logic Using SMT.
In Natasha Sharygina and Helmut Veith, edi-
tors, Computer Aided Verification, pages 773–
789, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[6] Ruzica Piskac, Thomas Wies, and Damien Zuf-
ferey. Automating Separation Logic with Trees
and Data. In Proceedings of the 16th Interna-
tional Conference on Computer Aided Verifica-
tion - Volume 8559, page 711–728, Berlin, Hei-
delberg, 2014. Springer-Verlag.

[7] Jens Katelaan, Dejan Jovanovic, and Georg Weis-
senbacher. A Separation Logic with Data: Small
Models and Automation. In IJCAR, 2018.

[8] Jens Pagel. Decision Procedures for Separation
Logic: Beyond Symbolic Heaps, 2020.

[9] Andrew Reynolds, Radu Iosif, Cristina Serban,
and Tim King. A Decision Procedure for Sepa-
ration Logic in SMT. In Automated Technology
for Verification and Analysis 14th International
Symposium (ATVA 2016), volume 9938, pages
244–261, Chiba, Japan, October 2016.

[10] Kevin Batz, Ira Fesefeldt, Marvin Jansen, Joost-
Pieter Katoen, Florian Keßler, Christoph Math-
eja, and Thomas Noll. Foundations for Entail-
ment Checking in Quantitative Separation Logic.
In Ilya Sergey, editor, Programming Languages
and Systems, pages 57–84, Cham, 2022. Springer
International Publishing.

[11] Leonardo de Moura and Nikolaj Bjørner. Z3:
An Efficient SMT Solver. Tools and Algorithms
for the Construction and Analysis of Systems,
4963:337–340, 04 2008.

[12] Byron Cook, Christoph Haase, Joël Ouak-
nine, Matthew Parkinson, and James Worrell.
Tractable Reasoning in a Fragment of Separa-
tion Logic. In Proceedings of the 22nd Inter-
national Conference on Concurrency Theory,
CONCUR’11, page 235–249, Berlin, Heidelberg,
2011. Springer-Verlag.

[13] Juan Antonio Navarro Pérez and Andrey Ry-
balchenko. Separation Logic Modulo Theories.
Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 8301, 03
2013.

	Introduction
	Strong-Separation Logic
	Decision Procedure for Positive SSL
	Implementation and Experiments
	Conclusions
	References

