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Keyboard and Keys Image Recognition
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Abstract

The goal of this thesis is to create a solution for keyboard keys recognition to automate robotic writing

on keyboards. Datasets for keyboard detection in an image, character detection in an image and post-

processing correction of the character detection based on various keyboard layouts were created as

prerequisits for this work. This research presents several approaches towards keyboard keys detection

problem and selects the most suitable one. The chosen strategy is to split the problem into 3 phases which

correspond to the prepared datasets. Firstly, a separate keyboard detection is run. Secondly, characters

are recognized in the detected keyboard region. These tasks are accomplished using neural networks and

Canny edge detection technique. The last phase is the post-processing of the detection results (character

correction, autocompletion of undetected characters, special keys distinction etc.). The results of each

phase are evaluated. The contribution of the thesis lies in the creation of the datasets for keyboard and

keys detection, and novel modular and extensible solution for the recognition process that yields very

promising results.
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1. Introduction

The idea for this thesis comes from the company

Y Soft which develops a robotic automation solution

AIVA. The ultimate goal is to teach the robot to

autonomously write on keyboards. To accomplish

such a task, tools for keyboard and keys detection

are required. As no other open-source project seems

to exist, a custom solution has to be developed.

There are two tasks to be solved. The first one is

keyboard recognition in an image. This enables the

robot to decide if it can write and where. The second

task is single-character detection where characters

represent the keys. The objective is to recognize al-

phanumerical keys and some special keys. In addition,

special character detection is attempted. For both

tasks, training datasets had to be created.

On this topic, only one other solution could be found.

Researchers from Amazon also tried to solve auto-

mated keyboard typing for their framework [1]. Their

article [2] has been an inspiration, especially in the

solution design. Unfortunately, neither the code nor

the dataset seems to be publicly available.

The proposed solution is to split the image recogni-

tion process into 3 phases. Firstly, a keyboard region

is detected using YOLOv7 [3] neural network, the

current SOTA in object detection. Secondly, charac-

ters are recognized in the detected keyboard region

using YOLOv7 and Canny edge detection technique.

Lastly, the character detection results are processed

to make corrections.

The main contribution of the work is the improvement

of the production solution Y Soft AIVA. It greatly

simplifies the current keyboard typing process and

reduces the time for automation script definitions.

Furthermore, it provides datasets for keyboard and

character object detection to the public. Moreover, it

is to the best of my knowledge the only open-source

solution of its kind.

2. Datasets creation

No available keyboard object detection dataset could

be found. Therefore, custom datasets needed to be

prepared. In total, 3 datasets were created. These are

for training keyboard and single-character detectors

and validating post-processing correction algorithms.

Concerning the keyboards dataset, 615 keyboards of

different types from various devices were collected.

These were data augmented and generated to random

backgrounds. The augmentation methods used were
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scaling, blurring, brightness changing and the addition

of various noises, transparency and moiré effects.

When it comes to the characters, the dataset is in

grayscale. Randomly gray-colored characters and

backgrounds to put them on were generated with a

constraint of at least a 24-pixel intensity difference

between them. This can be done because keys on key-

boards are very contrastive and moving to grayscale

removes any color design effects. The augmentation

methods used were the same as for keyboards.

Concerning the post-processing validation dataset,

keys on 120 selected keyboards with different layouts

were annotated. The goal is to check if correct charac-

ters were recognized, redundant characters removed

or missing characters computed.

3. Solution design

For the keyboard detection model was used tiny ver-

sion of YOLOv7 neural network architecture. It

achieved the same accuracy as the standard version

while using fewer resources and it is significantly faster.

It was trained for 30 epochs with batch size 16 and it

takes 640x640 input images. It can accept any size

but is scaled or padded to this resolution.

The input for the character detection is the output

of the keyboard detection model. On the detected

keyboard region is simultaneously run YOLOv7 model

trained for characters and Canny edge detection. The

reason for this is that the character detector cannot

recognize e.g. space key when it is blank. The Canny

detector provides supplementary results for the sub-

sequent post-processing. The neural network was

in comparison to the keyboard detector trained for

50 epochs due to having 99 classes instead of 1,

so it takes longer. Both tiny and standard models

were trained and this time the difference was signifi-

cant. On the other hand, the post-processing results

demonstrate why tiny version might be sufficient.

The goal of the post-processing algorithm is to recog-

nize the layout and fix any incorrections. Undetected

characters can be computed, letter case for characters

such as xX, oO etc. corrected or special key keywords

found. This further improves the recognition results.

4. Recognition results

The keyboard detection was a huge success. Even

the tiny model achieves 100 % recall and precision

and over 97 % mAP@.95 for both validation and

testing data. Concerning the character detection, the

numbers on the single-character test dataset are lower

as table 1 depicts. Nevertheless, the results of the

standard model are still nice considering the inclusion

of special characters such as dots and commas. The

tiny version fares much worse and while it is quite

sure with its results with relatively high precision, the

lower recall says it cannot find a lot of characters.

Precision Recall mAP@.95
Keyboards (tiny) 1 1 0.97
Characters (tiny) 0.948 0.852 0.748
Characters (yolov7) 0.979 0.951 0.848

Table 1. Trained model results on test datasets

The post-processing algorithm, however, improves

the character detection results and also removes the

gap between tiny and standard models. On the post-

processing validation dataset, the character recog-

nition with applied post-processing achieves similar

though slightly worse results shown in table 2 than the

single-character detection on the character dataset.

Notwithstanding, the results are still great considering

this is a real-world and not a generated dataset. More-

over, these are averaged numbers impaired with spe-

cial character detection on which not much post-

processing is done. If focused only on the target

alphanumeric characters, both precision and recall are

incredibly good. What is more, the worse recall of

the tiny model actually helps the post-processing as

it does not handle many false positives and it leads

to even better results. This demonstrates the power

of the post-processing algorithm to correct detections

and compute missing characters based on predefined

layouts such as qwerty.

Precision Recall
All keys (yolov7) 0.942 0.949
All keys (tiny) 0.964 0.942
Alphanumeric (yolov7) 0.999 0.997
Alphanumeric (tiny) 1 0.998

Table 2. Post-processing algorithm results on

post-processing validation dataset

5. Conclusions

The thesis offers a working modular solution for key-

board and keys image recognition problems. Any

model can be easily retrained and switched to a dif-

ferent one. Similarly, additional post-processing tech-

niques to cover other special cases can be included.

The achieved results exceed expectations and in the

future, support for more character sets can be added.
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