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Abstract

Most popular centralized cryptocurrency exchanges work in a way that requires the customer to fully rely

on the exchange operators. Users should trust the operators that they will not interfere with the funds of

the customers.

We propose a design of exchange with focus on security, using trusted computing, especially the Intel SGX.

Using SGX enclaves, we can achieve transparency between the customer and exchange. Combined with

the smart contract on public blockchain we achieve non-equivocation of the exchange.

The current proof-of-concept implementation is capable of handling around 35 customer deposits per

second. In terms of bidding, the enclave is capable of handling around 23 bids per second for a single

coin pair. The bottleneck occurs with the usage of Merkle-Patricia tree (trie) and other cryptographically

oriented structures, since trie and other parts need exclusive access while being edited.

This work can be used as a stepping stone to use trusted computing hardware within centralized exchanges,

blockchains, or other security-oriented systems.
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1. Extended Abstract

For an average customer, centralized exchanges are

now the standard way to enter the world of digital

money. Recently, with the increasing rate of insider

attacks and exploits, users are increasingly losing

trust in centralized exchanges. The recent attack

within the FTX [1] exchange unleashed a wave of

questions about transparency between the customer

and the exchange. Is it possible to have a central-

ized exchange, where the operator does not have the

complete power? Using the principles of trusted com-

puting, we can introduce a secure gap between the

power of the operator and the exchange.

We propose a proof-of-concept design for a central-

ized exchange that utilizes Intel SGX enclaves to

create a secure gap between the operator and the

exchange. Our design aims to solve the exchange

non-equivocation and secure handling of exchange

secrets, such as private keys. We benchmark and

evaluate whether this solution is viable in a real pro-

duction environment, since Intel SGX enclaves come

with specific trade-offs, and the security protocols

also introduce some form of overhead.

One of the existing proposed solutions called Tesser-

act [2] aims to solve a similar problem of centralized

exchanges. The difference between our solution is

that the Tesseract solution proposes a complicated

time-locked deposit exchange method, which leads

to the need for periodic cross-chain settlement trans-

actions on blockchains. Periodic cross-chain swaps

introduce potential timing bugs and require larger syn-

chronization of exchange with the blockchain. Each

settlement transaction on every blockchain costs a

fee, which is another disadvantage.

Our exchange solution is made up of ledger L (history
tree [3]), account state (Merkle-Patricia tree [4]) A,
and an indexed database I. All these components are
maintained only by the enclave and are completely

outside the reach of the operator O.

The ledger L is made up of exchange microblocks and
uses a similar approach as the centralized blockchain

Aquareum [5]. A single microblock contains a Merkle

tree of microtransactions executed in a specific time

window within the enclave, and these microtransac-

tions change the state of accounts within the account

state A. A microtransaction can be one of these three
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types: deposit, bid, and withdrawal. Exchange can

provide a signed membership proof of the microtrans-

action being in the microblock. Since the ledger is

a history tree, exchange is able to provide signed in-

cremental proof that the specific microblock hash is

a member of the tree and that it commits the same

history as the current microblock. The root hash of

the account state is also included in the microblock,

providing a snapshot of the account state as part of

the microblock.

To achieve non-equivocation, the enclave deploys and

maintains a smart contract S on the public blockchain.
The contract is initialized and stores the following,

the public key of the operator on the public blockchain

PKPBO , public key of the exchange enclave on the

public blockchain PKPBE , public key of the exchange
enclave for the SGX TEE scheme PKTEEE , exchange

DNS or IP address AE and the latest version and its
root hash of the exchange ledger HL. This contract
serves as an indisputable proof that the exchange

enclave reached this state. The contract allows only

the exchange enclave to update the latest ledger

version, and the enclave does this periodically. In a

real environment, a reasonable period must be found

for updating the contract root hash. Since every

update costs the operator a fee, there needs to be a

compromise between speed and cost.

The exchange uses a decentralized identifier (DID)

combined with verifiable credentials for user control.

If the customer wants to open a new exchange ac-

count, he obtains a DID which includes his generated

private-public key pair, that will be used for authenti-

cation on the exchange.

To open a new account the customer performs SGX

remote attestation of the exchange, requests the en-

clave deposit address for a specific coin, and sends

funds to the address. After transaction finalization,

the customer sends the membership proof that the

transaction is included in the specified block. Ex-

change validates all signatures and verifies the proof

through enclave’s internal SPV client. If everything is

correct, the enclave opens an account and credits the

customer’s deposited funds into the account state of

exchange.

In terms of bidding, every bid is matched, executed,

and resolved virtually in the enclave. The customer

submits a bid by providing the amount of specific

coin that he wants to sell, followed by the amount

of specific coin that he wants to buy. The enclave

then attempts to match (fully or partially) the oposite

bids, sorted by the cheapest, and if they exist, ex-

change performs the swap between the accounts by

subtracting and adding balances.

Since trading and swapping occurs only virtually in the

enclave, we provide a withdrawal action for the cus-

tomer to retrieve his swapped coins. The customer

submits a withdrawal request with the specified coin,

amount, and address that is placed in the withdrawal

queue. Enclave periodically submits blockchain trans-

actions with multiple outputs, where each output

represents a single withdrawal, and credits the spec-

ified amount to the customer’s wallet. After the

transaction is burried under enough blocks, the en-

clave confirms the withdrawal inside the enclave by

subtracting the amount withdrawed from the frozen

amount.

Compared to Tesseract [2], our solution does not re-

quire time-locked deposits implemented in blockchain

transactions. More importantly, there is no need for

settlement transactions to be resolved before the end

of every time-locked deposit, and thus no need for

an atomic cross-chain settlement protocol. We trade

the ability of the customer to recover his funds after

exchange disappearance for a more straightforward

design. Keep in mind that if a potential breach of the

enclave occurred, this time-locking deposit approach

would still not help the customer protect his funds,

since the time-locked deposit transaction output is

only redeemable for exchange during the time period

of the lock. If the breach could lead to the malicious

operator obtaining the private keys created by the

enclave for wallets, the operator would be able to

redeem all time-locked deposits and steal the funds.

In addition, our design provides a way for the cus-

tomer to validate his own state of the account in

the account trie and his microtransaction being in a

microblock by using the smart contract S.

Our proof-of-concept implementation is capable of

handling around 35 customer deposits per second

and around 23 bids per second for single coin-pair.

There are two main sources of bottleneck. The first

bottleneck comes from the fact that the Merkle-

Patricia tree cannot be concurrently edited and recal-

culated, which means that the request for deposit or

bid resolution requires exclusive access. The second

source of bottleneck is the need for an exclusive lock

for bid resolution for a single coin pair. The imple-

mentation currently supports Bitcoin and Litecoin

and an exchange smart contract was implemented for

Ethereum blockchain.

We proposed a proof-of-concept design of a secure

exchange using Intel SGX. There is still much room for

improvement, especially for bid resolving and account

storing.
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