
3
http://excel.fit.vutbr.cz

Probabilistic Packet Classification

Acceleration on FPGA

Denis Kurka

Abstract

Classifying network packets is a crucial task in networking systems, as it allows for efficient routing

and filtering of data. Probabilistic filters are a classification method that uses different techniques to

approximate the membership of a packet in a set of rules. This work investigates three algorithms: Bloom,

cuckoo, and xor filter. The main aim is to compare the performance of these three methods when

implemented as hardware components in FPGA systems. The evaluation criteria include error rate, maximal

frequency, and FPGA resource usage. The results indicate that the xor filter outperforms the others

regarding error rate, which is superior in any error rate category. The Bloom filter is the fastest option

for smaller and quicker components where a higher error rate is tolerable. The cuckoo filter is the most

resource-efficient when FPGA logic is the primary concern. These findings contribute to the development

of optimized classification systems and provide valuable insights into the possibilities of implementing

probabilistic filters in hardware architectures.

xkurka05@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Packet classification is crucial in networking, as it

allows the packets to be routed, prioritised or blocked.

Furthermore, with the growing amount of data, it

becomes increasingly essential to study algorithms

that deal with this problem efficiently.

The classification boils down to comparing an ele-

ment against a set of rules and finding an appropriate

match. This is commonly done exactly using various

approaches such as linked lists or tree data structures.

However, with the ruleset increasing, it may be better

to sacrifice perfect matching for better space effi-

ciency. Ideally, this introduced error should only be a

false positive; if the match is false, it is undoubtedly

not in the ruleset.

One of the most well-known approximate set member-

ship algorithms is a Bloom filter [1]. This algorithm is

known for its speed and ability to add a new rule to an

already constructed filter. It has many variations [2]

and can even be implemented in hardware [3]. Other

methods include a cuckoo filter, capable of adding and

removing rules [4]. On the other hand, xor probing

algorithms, which cannot be changed after construc-

tion, can achieve the best memory efficiency [5, 6, 7].

As only the hardware implementation of bloom fil-

ters was studied, this work focuses on implementing

Bloom, cuckoo and a xor filter in FPGA design. The

resulting components should reveal the merits and

drawbacks of the presented algorithms, not limited to

their construction speed and memory efficiency. But

also their resource usage and throughput in hardware

design.

The results indicate that when targeting low positive

rates and best space efficiency, the xor filter is ahead

in all comparisons. However, bloom offers much

higher throughput for more miniature rulesets than

others, doubling compared to the xor probing. The

cuckoo filter uses the least FPGA resources and has

a better error rate in the practical range than the

bloom filter.

2. Probabilistic filters

The key idea behind probabilistic set membership

algorithms is to allow a representation of the ruleset

that only stores each rule partially. In other words,

the filter becomes lossy. With this, lossy filters can

store a much higher number of rules in the same

space than conventional approaches.

http://excel.fit.vutbr.cz
mailto:xkurka05@stud.fit.vutbr.cz


It is common to use hashing to achieve the probabilis-

tic nature. Filters using hash functions to create the

lossy ruleset representation can be categorised into

three groups [7]:

• And probing filters: An element is found when
all locations match. A Bloom filter is an exam-

ple of this.

• Or probing filters: An element is found when
one of the locations matches. A cuckoo filter

is an example of this.

• Xor probing filters: An element is found when
a bitwise xor of all locations is a match. A xor

filter is an example of this.

This categorisation can be seen on the poster in

Figure 1 . The cuckoo and xor filters use a shortened

representation of input called fingerprints. Which are

then stored in memory and later compared using the

appropriate probing style. Bloom is a fingerprint-less

method, making it much simpler to implement than

the others. This work focuses on implementing one

filter in each category: Bloom, cuckoo and xor filter.

3. Implementation

A common design was created to test all filters in a

hardware environment. This environment is shown

in Figure 2 . Firstly the FPGA is configured with

desired filter and specified parameters. The software

part of the system then communicates with the hard-

ware via a PCIe bus decoded to an MI interface. With

the prepared filter, the software configurator is pre-

sented with a ruleset. Filter parameters are read from

the FPGA so that the software can construct a filter

model. If the model construction is successful, the

configurator will begin data transfer to set all mem-

ories in the filter required for operation. After this

process, the filter is ready for use.

A UVM verification environment was built to check

this solution’s hardware design and software. Fur-

thermore, verification was used to simulate filter con-

struction, configuration and performance instead of

gathering results from deployed design.

It is important to note that even though Bloom and

cuckoo filters are dynamic, the implementations men-

tioned above do not include these features and treat

all filters as static. Also, the implemented algorithms

differ from the original, mainly in splitting a shared

memory into multiple chunks for a single read access

on one memory table, optimising for hardware use.

This, however, required substantial algorithm changes

and is another contribution of this work.

4. Results

In order to measure the all-around usability of men-

tioned methods, four evaluation criteria are used:

false positive rate, bits per element, maximal fre-

quency and CLB usage of the design.

A false positive rate is used, as a negative match

is always accurate. Bits per element represent the

ability to compress the ruleset. Both false positive

rate and bits per element can be measured from the

verification environment. FPGA resources are taken

from the synthesis of each design.

In Figure 3 , the filters are compared with their most

favourable configurations. Every point represents one

possible configuration of the filter algorithm. Bloom

is represented as a curve, as only the two best con-

figurations are shown: Bloom with 7 and 15 hashes.

Given the results, it is clear that the xor filter is supe-

rior to others in any false positive rate category. This

is especially visible in the practical range of around

0.3% false positive rate, where the xor filter achieves

an exceptional 10 bits per element. Bloom performs

better than the cuckoo filter when the false positive

rate exceeds 0.2%. Below this boundary, even the

more precise 15-hash Bloom fails to match the error

rate of the cuckoo filter.

On the other hand, even though the Bloom filter is

not the most accurate, the Table 1 shows that it is

undoubtedly the fastest, reaching frequencies above

800 MHz in picked configurations. More than double

in compared to the xor filter.

One configuration was picked and scaled for every

filter type to measure CLB usage. This is shown

in Figure 4 . We can see that the cuckoo filter is the

most efficient regarding FPGA resources, especially

in small filter sizes. The xor filter has similar usage to

hash-7 Bloom. Moreover, Hash-15 Bloom is around

1.8x more complex than hash-7 Bloom and about 3x

more than cuckoo.

The goal was to achieve 100 Gbps and higher speeds

since the filter is planned for use in Cesnet projects fo-

cused on high-speed networks. According to achieved

frequencies, it can handle 100 and 200 Gbps. 400

Gbps is a future work plan and can be achieved with

multi-packet processing per clock cycle.

From the findings above, it is clear that the xor filter

fulfilled its expectations as the most efficient filter.

However, when the false positive rate is not a problem,

Bloom can achieve much higher throughput than the

others. Lastly, the cuckoo filter is a good alternative

when FPGA resources are the primary concern.



References

[1] Burton H. Bloom. Space/time trade-offs in hash

coding with allowable errors. Commun. ACM,

13(7):422–426, jul 1970.

[2] Sasu Tarkoma, Christian Esteve Rothenberg, and

Eemil Lagerspetz. Theory and practice of bloom

filters for distributed systems. IEEE Communi-

cations Surveys and Tutorials, 14(1):131–155,

2012.

[3] Takuma Wada, Naoki Matsumura, Ryota Yasudo,

Koji Nakano, and Yasuaki Ito. Efficient imple-

mentations of bloom filter using block rams and

dsp slices on the fpga. Concurrency and Compu-

tation: Practice and Experience, 33(12):e5475,

2021. e5475 cpe.5475.

[4] Bin Fan, Dave G. Andersen, Michael Kaminsky,

and Michael D. Mitzenmacher. Cuckoo filter:

Practically better than bloom. In Proceedings of

the 10th ACM International on Conference on

Emerging Networking Experiments and Technolo-

gies, CoNEXT ’14, page 75–88, New York, NY,

USA, 2014. Association for Computing Machin-

ery.

[5] Thomas Mueller Graf and Daniel Lemire. Xor

filters: Faster and smaller than bloom and cuckoo

filters. ACM J. Exp. Algorithmics, 25, mar 2020.

[6] Thomas Mueller Graf and Daniel Lemire. Binary

fuse filters: Fast and smaller than xor filters. ACM

J. Exp. Algorithmics, 27, mar 2022.

[7] Peter C. Dillinger and Stefan Walzer. Ribbon filter:

practically smaller than bloom and xor, 2021.


	Introduction
	Probabilistic filters
	Implementation
	Results
	References

