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Abstract

The topic of this paper is the weight compression of convolutional neural networks. It uses a Weight-Sharing

technique to obtain a high level of compression ratio. The technique is applied layer-wise to amplify the

compression effect; however, it requires parameter optimization, which is done by Genetic algorithm or

Particle Swarm Optimization. Furthermore, additional compression using Quantization and post sharing

fine-tuning are explored. The implementation presented in this paper is then tested on Le-Net-5, which

leads to 20× weight size reduction with 0.62% accuracy loss on MNIST and Mobilenet v2 showing 4.86
times compression with 2.26% accuracy loss on Imagenet subdataset called Imagenette [1].

*xcoupe01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Modern convolutional neural networks are robust so-

lutions to handle tasks otherwise hard to code, such

as the classification of pictures, segmentation of MRI

data, etc. In recent years, the main focus is on improv-

ing accuracy by modifying the structure and enlarging

the number of trainable parameters. However, these

complicated neural networks consume a lot of energy

to evaluate solutions that are not viable for mobile

devices like cellphones.

Sze et al. [2] proves that the vast majority of energy

consumed by inferring a neural network comes from

loading the parameters from storage. So the energy

consumption should be reduced by compressing the

network’s data. But compressing the network too

much can lead to accuracy losses, so it needs to be

in balance.

The net can be compressed in a number of ways:

1. Refining the data (like weights)

2. Refining the net structure

3. Refining the operator

This paper explores the data refinement approach

where the main representative is Quantization, which

takes the original weights and transforms them into

other representations in order to seek compression

(i.e. from float32 to float16). This approach can

be beneficial because it allows hardware optimisation

for further energy savings. This method can also

be used during training to let the network adapt to

it. However, the end compression is limited by the

employed number of representations.

Another solution, which is discussed in this paper, is

Weight-Sharing, that takes a group of weights, runs

clustering algorithm to rank them into the given num-

ber of groups (typically K-means), and then replaces

them with keys to these groups. A translation ta-

ble with a key and group representing the value is

created. When the net is loaded, the keys in the

net structure are replaced with the values from the

table by the corresponding key. This technique is

applicable for different weight groups (model-wise or

layer-wise groups). This paper explores layer-wise

Weight-Sharing, because it demonstrates better per-

formance and is used in many papers (for example in

[3]). The number of representatives/clusters chosen

for each layer is determined by an optimization algo-

rithm in a given range. No retraining is done through

the compression to ease the computational demands

of this approach.

A dynamic target based fitness function is presented

for the optimisation. The premise is that the fitness

function is defined as a distance to some ideal un-

reachable target (in the accuracy and compression

axis), but it is hard to tell what that target should

be without closely studying the network first. The
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dynamic target allows to reduce the need of testing

the network and permits the target to be dynamically

shifted to push the optimisation for better results. In

some scenarios, no net knowledge is needed to get

good results using this approach.

Furthermore, this paper explores the benefits of ad-

ditional Quantization on the representatives in the

translation table to achieve additional compression. In

the project, float32 is the base representation, which

can be converted through Quantization to float16 or

float8 representations. Also a fine-tuning method is

explored to retrieve some accuracy by modifying the

clustering space.

The approach was tested on two types of Le-Net-5

(two types - Tanh and ReLu activation functions) and

Mobilenet v2 with the following results.

2. Poster Commentary

The poster describes the proposed solution for the

approach. The Figure 1 shows the whole process

of the net compression in a graph-like form (on Le-

Net-5 example). The computation goes from top to

bottom. There are shown the two inputs that are

needed for the compression. These are the target

neural network and the layer ranges for a number of

clusters.

Then, the search space optimization on the cluster

ranges is done. This is proposed by Dupuis et al. [4].

It takes the network and, for each layer and each

cluster option in this layer, it tries to compress only

the current layer’s weights and measures the com-

pression rate, while the premise is that if the accuracy

drops too low, the cluster value is not useful and will

not be included in the search space. All layers and

their clusters number precision are plotted in the line

graph. This is shown in the Figure 1 in the ”Range

Optimization” section.

Next, the optimization and weight sharing is depicted.

Firstly, the new random population is created. Each

member of the population represents the number of

clusters for each layer of the net (e.g., there will be 5

values for Le-Net because Le-Net has 5 layers). After

that, the members are scored by combining compres-

sion rate (CR) and accuracy (ACC) by equation 1.

To compute these metrics, it is necessary to perform

the weight sharing and evaluate the compressed net-

work. The process of weight sharing is shown in the

figure 1 in the ”Weight Sharing” section with the

description of the weight compression performance.

As mentioned in Sect. 1, additional Quantization is

carried out, which is also shown in the Figure 1 in

section ”Additional Quantization” with a picture of

different types that are used in the project. Lastly,

the CR and ACC metrics are used to update the

fitness target (ACCtarget and CRtarget) if necessary

and then every candidate solution is scored by equa-

tion 1. The scores for each candidate solution are

processed by the optimization algorithms shown in

the Figure 1 in the ”Optimization algorithm” section

and the cycle is repeated.

After the optimization completion, the fine-tuning is

performed. The proposed fine-tuning’s idea is based

on modulating the space for the clustering algorithm.

The modulated space is shown in figure 1 in the

”Fine-tuning” section. The space is modulated by the

Tanh function because it enlarges the distances in

the function’s zero point while shrinking the relative

space on the edges of the space. It is based on the

idea that most of the weights are around zero point

and the weight distribution is usually normal. By

this modulation, it is possible to shift some clusters

towards the zero point and have more precision for

weights located there. The resulting weight clustering

is shown in figure 1 in the ”Fine-tuning” section

(can also be used to further explain clustering of

weights and Weight-Sharing principle). After that,

the network is compressed.

On the right side in the first paragraph, goals and brief

step-by-step description of the approach is presented.

It discusses the core ideas behind the project and also

describes the dynamic fitness target approach. This

is easier to understand by observing how the fitness

and compression rate are computed in equations 1

and 2. A graph in figure 2 can be used to further

explain this functionality.

The results are then presented separately for each

network with a corresponding dataset. Firstly, the

Le-Net-5 results are discussed in table 1. It shows the

best obtained results for each net type and Quantiza-

tion setting. Below that in Figure 2, a graph depicting

the search on Le-net-5 ReLu is shown, which high-

lights the difference in the performance for various

Quantization approaches and with and without the

fine-tuning method. In this graph, it is clearly observ-

able that the additional Quantization can be beneficial

and can lead to better results, but this way has also

its limits (float16 performed better than float32 but

float8 did not perform well). Also, as mentioned

above, the fitness function and dynamic target can

be explained using this graph. In table 2, results on

Mobilenet v2 network are presented. Note that the

float8 is crossed out because no viable solution was

found.
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