
3
http://excel.fit.vutbr.cz

Static Data Race Detection in Low-Level C Code

Lucie Svobodová*

Abstract

In this paper, we present DarC, a novel static data race analyser designed for low-level C code. Our tool is

implemented as an analyser plugin of the Facebook/Meta INFER framework.

*xsvobo1x@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Nowadays, multithreading has become a popular ap-

proach to utilize the many processors of modern com-

puters better. However, concurrency leads not only

to faster execution, but concurrent programs are also

more complex and harder to understand, test and

debug due to the many ways in which concurrently

running threads can interleave, with errors hidden in

just a few of them. Even after running tests on a

concurrent program multiple times, it may still be

challenging to uncover all the possible interleavings

of the threads that could lead to errors.

To improve the coverage of rare behaviors in concur-

rent programs, different approaches such as system-

atic testing [1] and noise-based testing [2] can be

used. Another effective approach is to use extrapo-

lating dynamic checkers like [3], which can identify

potential errors based on the detection of their symp-

toms, even if they are not encountered during testing

runs. Unfortunately, even though these checkers have

proven quite useful in practice, they can still miss

errors. Furthermore, monitoring a run of a large pro-

gram through such checkers may be quite expensive

and time-consuming.

On the other hand, approaches based on model check-

ing can ensure the detection of all potential errors.

However, the scalability of these techniques is still

limited and so far cannot handle truly large industrial

code. Even with the help of methods such as se-

quentialization [4], which is one of the most scalable

approaches in the field, it is still challenging to analyse

such codebases.

Static analysis is an alternative to the above ap-

proaches. It can scale better than model checking

and find bugs not found by dynamic analysis, though

for the price of potentially missing some errors and/or

producing false alarms. The area of static analysis is

very extensive and includes many different approaches,

such as data-flow analysis and abstract interpreta-

tion. The latter approach is supported, e.g., in Face-

book/Meta Infer [5] — an open-source framework for

creating highly scalable, compositional, incremental,

and interprocedural static analysers based on abstract

interpretation. Infer provides several analysers that

check for various types of bugs, such as buffer over-

flows, null-dereferencing, or memory leaks. As for

concurrency-related bugs, Infer provides a support

for finding some forms of data races and deadlocks,

but it is limited to Java programs only and fails for

C programs, which use a lower-level lock manipula-

tion [6, 7]. In this work, we propose DarC, a data

race checker designed for low-level C code that fits

the common principles of analyses used in Infer.

The design of the DarC checker was inspired by Rac-

erD [6], a data race detector for Java programs, that

is already implemented in Infer. Both checkers use

a bottom-up approach based on computing function

summaries, but RacerD is limited to programs that

use high-level locking and class constructs. Existing

solutions for data race detection in C code include the

RacerX [8] and Coderrect/O2 [9] static analysers.

The former analyser uses a top-down approach, is

flow-sensitive and context-sensitive, and uses various

heuristics, such as a ranking algorithm, to reduce the

number of false alarms emitted. Unfortunately, anno-

tations must be added to the code before using this

tool. Coderrect/O2 is an analyser for both C/C++

and Java/Android applications, and it is powered by

origins, an abstraction of threads and events.

http://excel.fit.vutbr.cz
mailto:xsvobo1x@stud.fit.vutbr.cz


2. Static Data Race Detection

For scalability reasons, DarC runs along the call tree

of a given program in a bottom-up manner, starting

from its leaves. Each function is analysed only once,

without knowing its possible call context. As the

function is analysed, a summary is derived and used

when analysing functions higher up in the call tree.

The content of the summaries that we have proposed

in our work consists of a set of accesses that occur

in the analysed function, a set of locks that remain

locked at the end of the function, a set of threads

that may be running, and aliases, a set of pairs of

variables that may alias. Out of these elements, the

set of accesses is probably the most important for

the data races computation.

Each access contains information about the accessed

variable, type of the access (i.e. read or write), a

set of locks that must be locked at the given pro-

gram point, a set of threads that may be currently

running, and the thread on which the variable is ac-

cessed. However, due to the bottom-up approach,

the information about threads and locks is incomplete

and is updated later, when the function is called from

higher-level functions. Listing 2 shows the set of

accesses computed for the main function in Listing 1.

1 int i;

2 void *foo() –

3 pthread˙mutex˙lock(lock);

4 i = 0;

5 pthread˙mutex˙unlock(lock);

6 ˝

7 int main() –

8 pthread˙create(thread1, foo);

9 i = 42;

10 ˝

Listing 1. A sample code illustrating a data race

between two accesses using C/Pthreads.

accesses: –

(i, line 4, Write, –main, thread1˝, –lock˝, thread1),

(i, line 9, Write, –main, thread1˝, –˝, main)˝

Listing 2. A set of accesses in the summary of the

main function from Listing 1.

During analysing a function, the set of variables that

may alias is stored. When a variable is accessed and

any alias of the variable is found, accesses to all vari-

ables that may be aliased are added to the set of

accesses. A set of variables that are local to the

function is also stored during analysis, and only those

accesses that are not to local variables are stored in

the function’s summary, reducing the size of the set

of accesses and increasing the scalability.

The computation of data races takes place after the

analysis of the main function is completed. Using a

system of conditions, it is checked if there exists a

pair of accesses in the set, where multiple threads

may access the same variable without proper synchro-

nization. If a pair of accesses that may cause a data

race is found, it is reported. Only one data race for a

variable is reported to avoid overwhelming developers

during report examination.

We have evaluated our checker on both simple and

more complex real-world programs. In our first set

of experiments, we have applied DarC on two bench-

marks and compared the analysis results with results

produced by Coderrect/O2 [9], as well as two dynamic

analysers, ThreadSanitizer [10] and Helgrind [11].

The results of the analysis on the DataRaceBench-

mark [12], a benchmark consisting of 67 C/Pthreads

programs, which was designed to evaluate concur-

rency analysers, are shown in Table 1. DarC reported

nearly the same number of data races as the dynamic

analysers, while Coderrect missed at least 11 of them.

We also analysed a benchmark of 82 programs that

we developed ourselves as a test suite for DarC [13].

For this benchmark, DarC reported 55 programs with

data races, where 45 of them were confirmed by

ThreadSanitizer. Coderrect detected only 24 of them

and the analysis time for Coderrect was more than

three times longer than for DarC.

Table 1. Results of DarC, Coderrect, ThreadSanitizer

and Helgrind analysers on DataRaceBenchmark [12].

analyser races no races errors time
DarC 41 26 0 26.3s
Coderrect 29 33 1 1m20s
ThreadSanitizer 40 23 0 17.7s
Helgrind 40 22 1 28.5s

Regarding experiments with more complex programs,

we have analysed the sort, grep, tgrep, memcached,

and Fast-DDS applications. DarC did not report any

data races in any of these programs. However, dur-

ing our investigation of tgrep, we discovered that

pthread create() wrappers are used in the pro-

gram, which our checker does not currently support.

This may be a reason why no data races were re-

ported. As an experiment, we replaced the wrappers

with calls to the pthread create() function, which

led to the detection of two data races. However,

we do not have the information if these are false

alarms or not. As a sanity check, we removed one

pthread mutex lock() function call in tgrep and

DarC successfully detected the introduced data race.

We find the results of our experimental evaluation

quite promising, and the improvement of our new

data race analyser based on the identified problems

will be the subject of our future work.



Acknowledgements

I would like to thank my supervisor Tomáš Vojnar and

Tomáš Daćık for their help. The work was supported

by the Czech Science Foundation project AIDE (23-

06506S) and the Horizon Europe project CHESS

(101087529).

References

[1] J. Wu, Y. Tang, H. Hu, H. Cui, and J. Yang.

Sound and Precise Analysis of Parallel Programs

through Schedule Specialization. In Proc. of

PLDI’12. ACM, 2012.

[2] J. Fiedor, V. Hrubá, B. Křena, Z. Letko, S. Ur,

and T. Vojnar. Advances in Noise-based Testing.

Software Testing, Verification and Reliability,

24(7):1–38, 2014.

[3] C. Flanagan and S. N. Freund. FastTrack: Effi-

cient and Precise Dynamic Race Detection. In

Proc. of PLDI’09. ACM, 2009.

[4] T. L. Nguyen, B. Fischer, S. L. Torre, and G. Par-

lato. Lazy Sequentialization for the Safety Ver-

ification of Unbounded Concurrent Programs.

In Proc. of ATVA’16, volume 9938 of LNCS.

Springer, 2016.

[5] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi,

P. Hooimeijer, M. Luca, P. O’Hearn, I. Papakon-

stantinou, J. Purbrick, and D. Rodriguez. Mov-

ing Fast with Software Verification. In Proc. of

NFM’15, volume 9058 of LNCS. Springer, 2015.

[6] S. Blackshear, N. Gorogiannis, P. O’Hearn, and

I. Sergey. RacerD: Compositional Static Race

Detection. Proceedings of the ACM on Program-

ming Languages, 2(OOPSLA):144:1–144:28,

2018.

[7] D. Distefano, M. Fähndrich, F. Logozzo, and

P. W. O’Hearn. Scaling Static Analyses at Face-

book. Commun. ACM, 62(8):62–70, 2019.

[8] D. Engler and K. Ashcraft. RacerX: Effective,

Static Detection of Race Conditions and Dead-

locks. In Proc. of SOSP’03. ACM, 2003.

[9] Bozhen Liu, Peiming Liu, Yanze Li, Chia-Che

Tsai, Dilma Da Silva, and Jeff Huang. When

threads meet events: Efficient and precise static

race detection with origins. In Proceedings of

the 42nd ACM SIGPLAN International Confer-

ence on Programming Language Design and Im-

plementation, PLDI 2021, page 725–739, New

York, NY, USA, 2021. Association for Comput-

ing Machinery.

[10] Konstantin Serebryany and Timur Iskhodzhanov.

Threadsanitizer: Data race detection in practice.

In Proceedings of the Workshop on Binary In-

strumentation and Applications, WBIA ’09, page

62–71, New York, NY, USA, 2009. Association

for Computing Machinery.

[11] Home of memcheck, helgrind and drd.

[12] DataRaceBenchmark. https://github.com/

marchartung/DataRaceBenchmark.

[13] ConcurrencyBenchmark. https:

//github.com/svobodovaLucie/

ConcurrencyBenchmark.

https://github.com/marchartung/DataRaceBenchmark
https://github.com/marchartung/DataRaceBenchmark
https://github.com/svobodovaLucie/ConcurrencyBenchmark
https://github.com/svobodovaLucie/ConcurrencyBenchmark
https://github.com/svobodovaLucie/ConcurrencyBenchmark

	Introduction
	Static Data Race Detection
	References

