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Deep Learning for Electron Microscopy Image Stitching

Petr Šilling*

Abstract

Image stitching is an essential technique for reconstructing volumes of biological samples from overlapping

tiles of electron microscopy (EM) images. Current volume EM stitching methods generally rely on

handcrafted features, such as those produced by SIFT. However, recent developments indicate that

convolutional neural networks (CNNs) can improve stitching accuracy by learning discriminative features

directly from training images. In this paper, we apply deep learning stitching techniques to volume EM

images in an attempt to improve the performance of conventional methods. Experiments on a synthetically

generated dataset of volume EM images show overall accuracy similar to SIFT while achieving greater

robustness on images with low-quality texture or small overlap regions. The results suggest that deep

learning approaches could be beneficial for EM imaging, e.g., by enabling the use of smaller tile overlaps.
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1. Introduction

Image stitching is the process of combining overlap-

ping images into a single image with a wide field of

view (FOV). Stitching is crucial for sample reconstruc-

tion in volume electron microscopy (EM), where large

grids of overlapping images are produced to capture

samples that cannot fit under the FOV of a single

electron microscope.

Current volume EM stitching methods [1, 2, 3, 4] rely

on traditional approaches, such as SIFT [5]. Conse-

quently, they may struggle with repetitive patterns,

poor texture, and high-resolution images – all of which

are common in volume EM. Hence, accurate stitching

often requires large image overlaps, which slows down

the speed of imaging and increases data sizes.

Motivated by the above issues and recent develop-

ments in feature detection and matching using convo-

lutional neural networks (CNNs) [6, 7, 8], we propose

DEMIS1, a novel EM image stitching tool that utilises

LoFTR [8], a deep learning feature matching network.

Furthermore, we propose a novel synthetic dataset

generated from 424 manually selected and publicly

available EM images with high resolution.

We use the synthetic dataset to evaluate DEMIS

on common image quality metrics, achieving results

similar to SIFT-based approaches, while demonstrat-

1https://github.com/PSilling/demis

ing increased robustness on images with low-quality

texture, high resolution, or smaller overlaps. The

results suggest that while areas for improvement re-

main, CNNs could be an important asset for reducing

overlaps between volume EM images without com-

promising stitching accuracy.

2. Motivation

In volume EM, it is common for large samples to

be imaged in parts, forming a grid of overlapping

images. The grid must then be stitched to form the

final image. Some current methods stitch the grid

using different image correlation techniques [2, 3].

However, these methods have the disadvantage of

being able to represent only translations accurately [3].

Therefore, in this paper, we focus on methods that

employ SIFT [5] features for image stitching [1, 4].

The general SIFT stitching pipeline works as fol-

lows [9]. First, SIFT features of the stitched images

are detected and described. Second, matches are

established between features of overlapping images

(e.g., by searching for nearest neighbours). Based on

these matches, homographies that relate the over-

lapping images are estimated using RANSAC [10].

Finally, the homography estimates are refined using

global optimisation and the images are stitched to-

gether accordingly.
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Unfortunately, as can be seen in Figure 1 [11], SIFT

may have issues detecting features, e.g., in images

with low-quality texture. Hence, in this paper, we

propose to replace SIFT with deep learning methods.

3. Synthetic Dataset

To be able to evaluate the proposed solution, we

prepare a synthetic dataset by manually selecting 424

distinct high-quality and high-resolution EM images

publicly available on EMPIAR 2 or CIL 3. As shown

in Figure 2 [12], each selected image is divided into

a grid of overlapping tiles of size 1024×1024 pixels.

Additionally, random brightness and contrast changes,

random rotation and translation, and Gaussian noise

are applied to each tile. Of the resulting 8339 images,

1306 were selected for evaluation purposes.

4. Proposed Solution

The proposed solution, the DEMIS tool, is based on

the standard feature-based stitching pipeline described

in Section 2. However, it replaces feature detection

and matching with LoFTR [8] (explained in Section 5).

In particular, DEMIS processes grids of overlapping

EM images in the following way.

First, the brightness and contrast of the raw input im-

ages are normalised to aid feature detection and mask

future image tile boundaries. Second, for each pair of

adjacent images, features are detected and matched

by LoFTR. The matches are then used to estimate

the initial homographies between neighbouring images.

For homography estimation, we utilise the default

OpenCV4 implementation based on RANSAC [10].

Subsequently, a SLAM graph is constructed using

the graphslam5 library. In the graph, each image

tile from the grid is represented by a single vertex

placed at the expected tile position (determined by

expected overlaps). The adjacent vertices (i.e., im-

age tiles) are then connected by edges corresponding

to the homography-induced relative position change.

Only rotation and translation parameters can be rep-

resented this way and, hence, we estimate only those.

Doing so is generally not an issue for EM images.

Finally, after the SLAM graph is optimised, the cor-

rected homographies are extracted from the graph

and the grid is stitched accordingly. The whole pro-

cess is illustrated by Figure 3 [13].

2https://www.ebi.ac.uk/empiar/
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5. Local Feature Transformer (LoFTR)

LoFTR [8] is a Transformer-based [14] network de-

signed to simultaneously detect and match features

between pairs of input images. As can be seen in

Figure 4 [8], it has four sequential components.

First, a CNN extracts coarse- and fine-level feature

maps. Second, positionally encoded coarse-level fea-

ture maps are processed by the main Transformer

module. Next, a differentiable matching layer matches

the transformed features, generating a match con-

fidence matrix. Finally, coarse-level matches are se-

lected using a specified threshold and further refined

with the help of fine-level feature maps.

6. Results on Evaluation Images

To evaluate DEMIS, we compare its performance on

various stitching quality metrics against a baseline

that uses SIFT instead of LoFTR. All experiments

are run on the evaluation images from Section 3. The

results are displayed in Table 1 .

The results show that LoFTR finds, on average, 18%

more matches than SIFT. The increased match count

suggests greater overall robustness of the approach.

This is demonstrated on the high-resolution image

pairs from Figure 5 and Figure 6 (both provided

by TESCAN 3DIM), where SIFT detects significantly

fewer matches than LoFTR. Moreover, the matches

are more accurate based on mean reprojection errors.

Furthermore, the results show that LoFTR achieves

similar performance in terms of homography esti-

mation accuracy and final perceived stitched image

quality (measured by PSNR, SSIM [15], FSIM [16],

and BRISQUE [17]). This suggests that the increase

in robustness does not come at the cost of a perfor-

mance decrease in other areas.

7. Conclusions

This paper presented DEMIS, a novel EM image

stitching tool based on LoFTR feature matching, and

a novel synthetic dataset of EM images. Experiments

showed greater robustness while achieving accuracy

similar to traditional stitching approaches. Future

work could focus on creating a more challenging eval-

uation dataset and on proper domain adaptation of

LoFTR to EM imagery.
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