
3
http://excel.fit.vutbr.cz

Converter between formats of Deep Neural Network

models on mobile platforms

Martin Pavella*

Abstract

One of the most popular formats for representing Deep Neural Network (DNN) models is ONNX. The

development of drivers for HW accelerators on embeded systems is expensive and ONNX is rarely supported.

The necessary SW support is typically only implemented for the TensorFlow Lite (TFLite) DNN model

format. Currently the options for conversion of pre-trained ONNX models to TFLite are inadequate and

produce sub-optimal models.

The result of my work is a direct converter of ONNX models to TFLite which focuses on producing as

efficient models as possible. The program was verified on DNN models for image classification, object

detection, segmentation and acoustic data analysis. The converted models produce identical outputs as

the original ones and experiments show a significant improvement in inference speed.

*xpavel39@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

ONNX is a popular format for representing Deep

Neural Network (DNN) models. HW accelerators for

inference on mobile and embeded systems are however

typically only supported by models in the TensorFlow

Lite (TFLite) format.

A DNN model can often be represented in either

format. Converting a pre-trained ONNX model to

TFLite can provide a significant increase in inference

speed as well as a reduction in model size.

Current solutions1 for such conversion first convert

the ONNX model to the TensorFlow format and

then apply the TensorFlow to TFLite converter2 by

Google. This approach often introduces unwanted

artifacts and restrictions for tensor quantisation.

My solution is a direct converter of ONNX models

to TFLite. It bypasses the TensorFlow to TFLite

converter, which allows for total control over the

resulting model. This approach generates efficient

models which produce identical outputs as the original

ones. The improved utilization of HW accelerators

1For example: https://github.com/PINTO0309/onnx2tf

or https://github.com/onnx/onnx-tensorflow
2https://www.tensorflow.org/lite/models/convert/

convert˙models

has significantly increased the inference speed of mod-

els after conversion.

The program was developed and tested in collabora-

tion with the NXP company.

2. The need for conversion

Many frameworks for training and inference of DNN

models use the ONNX format, as it is widely sup-

ported and open source. Special hardware acceler-

ators called Neural Processing Units (NPU) are be-

ing designed to accelerate costly operations such as

matrix multiplication or convolution on mobile and

embeded devices. The development of drivers and

supporting SW for them is very expensive and typi-

cally a given NPU is only supported by TFLite. As

these accelerators can significantly increase the speed

of model inference, the motivation to convert ONNX

models to the TFLite format is strong.

Current solutions take a shortcut by first converting

to the TensorFlow format and then using the exist-

ing converter to TFLite by Google. This approach

takes away the ability to precisely control the out-

put model, which sometimes results in sub-optimal

models. For instance ONNX uses two operators to

represent depth-wise convolution while TFLite defines

a single dedicated operator. The converters often

http://excel.fit.vutbr.cz
mailto:xpavel39@stud.fit.vutbr.cz
https://github.com/PINTO0309/onnx2tf
https://github.com/onnx/onnx-tensorflow
https://www.tensorflow.org/lite/models/convert/convert_models
https://www.tensorflow.org/lite/models/convert/convert_models


avoid this optimization. Sometimes extra operators

are added to transform tensors dynamically during

inference even when static transformation during con-

version is possible.

3. Proposed solution

My approach was to design a direct converter from

ONNX to TFLite which provides total control over

the output model. It works by deserializing the input

ONNX model and representing it as a hierarchy of

objects. A part of this hierarchy is a directed computa-

tional graph, where each node represents an operator.

As suggested on Fig. 1, this graph is analyzed for

patterns of operators which are then converted and

added to the newly forming TFLite model. TFLite

uses a directed computational graph to represent its

DNN as well, but it defines its own set of operators

with different behavior. The conversion between oper-

ators of these formats is the main challenge of model

conversion. The operators have complex behavior

and edge cases are difficult to identify and implement.

Operator conversion is a complicated and evolving

problem as new operators are constantly updated and

new ones are being introduced.

Both formats use different ways to represent ten-

sors. ONNX uses NCHW while TFLite only supports

NHWC. These formats define how tensor dimensions

are stored in memory. Static tensors must be trans-

formed during conversion and dynamic tensors some-

times need to be reshaped using operators.

4. Results

The converter has been validated on models used

for classification, object detection, segmentation and

analysis of acoustic data.

The example on Fig. 2 shows a selected portion of the

Alexnet model. It is a convolutional DNN for image

classification [1] and can be relatively efficiently repre-

sented in TFLite. The TFLite model has a Transpose

operator, which is not present in the original ONNX

version. This is because the following Reshape op-

erator flattens the tensor into a 2D matrix. In the

ONNX model, the tensor is flattened from the NCHW

format. Flattening a tensor from a different format

would cause its values to be at different positions in

the matrix, which would cause undefined behavior of

the following operators.

The files with TFLite models use a binary flatbuffer

format, which can result in smaller size then in the

case of ONNX, which uses protocol buffers. However

the need to add extra operators often cancels out the

savings. In the case of an efficiently converted model,

the file size has been reduced by up to 420 kB.

5. Impact on inference

The converted models produce nearly identical out-

puts as their ONNX versions. The absolute errors

tend to be in the range of 10−6 to 10−12 depending

on the model, which can be attributed to accumulated

errors of floating point calculations.

With the help of the NXP company and their special-

ized HW, we were able to test the effects of model

conversion on inference speeds on target platforms.

Tab. 1 shows a significant improvement in the time

it takes to complete inference of selected models.

The TFLite variants display up to 30% faster infer-

ence speeds and the effects are most noticeable when

a smaller number of threads is used.

6. Limitations

ONNX supports over 140 operators. Implementing

the conversion of all of them is far beyond the scope of

this work. The aim was to focus on a smaller subset

of operators which are used by many models. So the

introduction of a new model will occasionally require

implementation of the conversion of new operators.

ONNX is a more complex format which defines var-

ious data structures and powerful operators. As

a result, not every model can be represented using

TFLite’s limited expressive options. In some cases

it is possible to convert a model, but it requires the

addition of extra operators. This can result in a sub-

optimal model, which sometimes defeats the purpose

of conversion.

Acknowledgements

I would like to thank Ing. Róbert Kalmár of NXP for

his professional experience which was the source for

section 2.

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E

Hinton. Imagenet classification with deep convolu-

tional neural networks. In F. Pereira, C.J. Burges,

L. Bottou, and K.Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems,

volume 25. Curran Associates, Inc., 2012.


	Introduction
	The need for conversion
	Proposed solution
	Results
	Impact on inference
	Limitations
	References

