
3
http://excel.fit.vutbr.cz

Alternative deep pushdown automata and their

aplications

Radovan Klembara*

Abstract

The goal of my thesis is to design new versions of deep pushdown automata, their analysis and aplication

in informatics. These new versions should have better properties than basic deep pushdown automata. I

have created two new versions of automata. The idea behind modificatons is to add parallel processing of

expansive transitions. For each version I have created algorithms, which can be used to converse these

versions to basic deep pushdown automata. Furhtermore I have created algorithms for converting basic

deep pushdown automata back to these new versions. Proposed alternative versions of deep pushdown

automata are faster than their basic version thanks to the paralelism. Through their analysis I have found

out that their strength is same as strength of basic deep pushdown automata. Solution of this thesis

allows designing parallel version of deep pushdown automaton instead of basic deep pushdown automaton,

that can result in faster and more efective design. It is possible to use these version in bioinformatics in

searching for DNA repetitions, RNA psudoknots and more.

*radovan@klembara.pro, Faculty of Information Technology, Brno University of Technology

1. Introduction

Theoretical informatics gives many models that ac-

cept languages, but the number of alternative formall

grammars is far greater than number of automatons.

This fact convinced me to create new versions of

automata. I have decided to modify deep pushdown

automata because they are as strong as n-limited

state grammars and they have been created by simple

idea of deeper access to the pushdown.

The goal is to modify deep pushdown automata to

make them faster and easier to use. The new au-

tomata have to be at least properly defined. Addi-

tionally it should be proven that they have better

properties than the basic deep pushdown automata.

Then it is required to find possible their applications

in bioinformatics.

I have created two modifications, by adding parallelism

to deep pushdown automata. First solution can make

number of simultaneous expansions maximally equal

to depth of automata. The other solution specifies

number of parallel expansions to depth of automata.

For these automata I have created algorithms that

conver them to basic version and vice versa. These

automata are as strong as deep pushdown automata

and can be used for example in searching DNA repe-

titions.

2. Deep pushdown automata

The deep pushdown automata were presented in Acta

Informatica by professor Meduna. The idea behind

deep pushdown automata is that they allow access to

symbols that are deeper inside the pushdown than the

top. Other than that the deep pushdown automaton

works exactly like any other pushdown automaton.

Deep pushdown automaton (PDn) is defined as a

septuple M = (Q,Σ,Γ,R,s,S,F ), where Q is a finite

set of states, Σ is an input alphabet, Γ is a pushdown

alphabet, Σ ⊆ Γ, Γ \Σ contains a special bottom
symbol denoted by #, R is finite relation, R⊆ (N+×
Q× (Γ\ (Σ∪{#}))×Q× (Γ\{#})+)∪ (N+×Q×
{#}×Q× (Γ \ {#})∗{#}), s is start state, s ∈ Q,
S is the start pushdown symbol, S ∈ Γ, F is a set of
final states, F ⊆Q.
The finite relation R is also refered as a set of rules.

The pop rules of the automaton are implicit. In-

stead of (m,q,A,p,v) ∈ R, we write mqA −→ pv . If
rules of automaton M access symbols located max-

imally in depth n then we can denote the automa-

http://excel.fit.vutbr.cz
mailto:radovan@klembara.pro


ton as Mn. For every n ≥ 1, deepPDn denotes the
family of languages defined by the deep pushdown

automata of depth i, where 1 ≤ i ≤ n. Let CF and
CS denote the families of context-free and context-

sensitive languages, respectively. Then the expre-

sion deepPD1 = CF is valid. Deep pushdown au-

tomata create infinite hierarchy of language families.

This hierarchy is equivalent to hierarchy created by

n-limited state grammars. This means that the expre-

sion CF = deepPD1 ⊂ deepPD2 ⊂ ·· · ⊂ deepPDn ⊂
deepPD∞ = CS is valid [1].

3. Parallel deep pushdown automata

First alternative deep pushdown automata introduces

parallelism. Atomaton works just like basic deep push-

down automaton with a small change in expansion

rules. The modification allows automata to simulta-

neously replace up to n non-input symbols, where n

is depth of automaton.

Parallel deep pushdown automaton (PPDn) is de-

fined as a septuple M = (Q,Σ,Γ,R,s,S,F ), where

elements are defined in the same way as in PPDn
except for R. R is finite relation, R ⊆ (Q× (Γ\ (Σ∪
{#}))n×Q× (Γ\{#})+)n. The rules are writen as
q(A1,A2, . . . ,Ak)−→ p(α1,α2, . . . ,αk).

3.1 Simulation of parallel automaton by basic au-

tomaton

The basic deep pushdown automaton can simulate

simultaneous expansions by sequence of sub-rules.

Where one parallel rule that replaces k non-input

symbols must be simulated by k sub-rules. Addition-

ally these sub-rules have to be used in order in which

the deepest accessing rule has to be used first and

the shallowest is used last. This is required because

in other way the more shallow expansion could push

other non-input symbols beyond the maximal depth.

That would mean that it wouldn’t be possible to use

last sub-rule. To create PDn that simulates PPDn
it is possible to use Algorithm 1.

3.2 Simulation of basic automaton by parallel au-

tomaton

The PPDn can simulate PDn by replacing non-input

symbols with themselves exept for one symbol. For

each PDn rule mqA−→ pv , PPDn replaces each non-
input symbol in smaller depth than m with itself, while

it can expand mth symbol to v. To create PPDn that

simulates some PDn it is possible to use Algorithm

2. For every PDn it is possible to create PPDn that

accepts same language as shown higher. Algorithm 2

proofs that even for every PPDn it is possible to cre-

ate PDn that accepts same language. Thanks to this,

it is valid to say that family of languages generated

by parallel deep pushdown automaton (deepPPDn)

with depth n is equivalent to deepPDn.

4. Tuple parallel deep pushdown automata

This alternative version is variation of PPDn. Tuple

parallel deep pushdown automata specifies number

of simultaneous expansions t in all rules uniformly.

Another difference is that this automata has starting

pushdown string instead of symbol.

Tuple parallel deep pushdown automaton (TPPDn) is

defined as a septuple M = (Q,Σ,Γ,R,s,Ω,F ), where

elements are defined in the same way as they are in

PPDn except for R and Ω. R is finite relation, R ⊆
(Q× (Γ\ (Σ∪{#}))n×Q× (Γ\{#})+)n, where n ∈
N+ is depth of automaton. Ω is the start pushdown
string, Ω ∈ ((Γ\Σ)\#)i , where i ≥ n. The rules are
written as q(A1,A2, . . . ,An)−→ p(α1,α2, . . . ,αn).

4.1 Simulation of tuple parallel automaton by ba-

sic automaton

The idea behind simulation of TPPDn by PDn is

similar to the simulation of PPDn by PDn. The

simultaneously expanded non-input symbols are ex-

panded one by one from the deepest to the shallowest.

The basic automaton has to expand its starting sym-

bol to starting string of TPPDn right at the start.

To create PDn that simulates some TPPDn it is

possible to use Algorithm 3.

4.2 Simulation of basic automaton by tuple par-

allel automaton

The reversed simulation also copies the idea from

PPDn. The TPPDn rules expand non-input sym-

bols to itself, but the one that was reffered by PDn.

TPPDn works over n non-input symbols so it creates

Ω with at least n ”filling” symbols. These symbols

are used as as empty spaces for basic rules access-

ing non-input symbols shallower than the depth of

automaton. To create such automaton it is possible

to use Algorithm 4. For every PDn it is possible

to create TPPDn that accepts same language as

shown higher. Algorithm 4 proofs that even for every

TPPDn it is possible to create PDn that accepts

same language. Thanks to this, it is valid to say that

family of languages generated by tuple parallel deep

pushdown automaton (deepTPPDn) with depth n is

equivalent to deepPDn.



5. Applications of alternative versions

Thanks to the parallel aproach it is easier to use

alternative versions in cases when it is needed to

do some expansion on two or more different places.

This comes handy in bioinformatics. For example the

DNA is responsible for passing genetic information

coded inside itself. The molecule of DNA is made of

nukleotides (adenin, guanin, cytosin, thymin), which

are connected in single line. Thanks to this DNA can

be represented by a string created over a set of the

first letters of each nucleotide. The DNA can contain

repetitions of sub-strings which can lead to instability

of DNA, therefore it is important to know whether

the DNA contains repetitions. For this it is possible

to use PPDn.

References

[1] Alexander Meduna. Deep pushdown automata.

Acta Informatica, 2006(98):114–124, 2006.


	Introduction
	Deep pushdown automata
	Parallel deep pushdown automata
	Tuple parallel deep pushdown automata
	Applications of alternative versions
	References

