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Metal Artifacts Reduction in Dental CT Scans
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Abstract

Artifacts (noise) caused by the presence of metals in computed tomography scans, impact their readability

and can cause problems when making decisions for medical professionals. In recent years, deep learning-

based methods have seen considerable success in solving this problem, compared to older hand-crafted

solutions. In this work, a supervised neural network model is proposed, along with a better way to solve

the problem of creating a synthetic dataset, as otherwise it is naturally impossible to obtain. The results

in evaluation metrics achieved are on par with those of state-of-the-art solutions while reducing the need

for prerequisites that are complicated to prepare. This generalized solution enables a broader and easier

application without needing a specific controlled environment.
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1. Introduction

One of the most important parts of clinical diagnosis

and treatment planning are computed tomography

(CT) images, where artifacts (noise) caused by the

presence of metals could negatively impact decision

making for medical professionals. Thus, the problem

of metal artifact reduction (MAR) needs people’s

attention.

Metals, unlike body tissues, significantly attenuate

X-rays in a nonuniform fashion over the spectrum,

which causes streaking and shading artifacts. The

MAR problem can be attempted in two ways, either

removing artifacts together with metals or just trying

to remove the artifacts while keeping the metals in,

the latter being our preferred one.

This problem has been addressed in various ways,

ranging from hand-crafted solutions [1, 2] to differ-

ent approaches based on deep learning [3, 4, 5, 6].

Generally, these solutions can be grouped into three

categories, namely, image enhancement, sinogram en-

hancement, and dual enhancement (joint image and

sinogram). Each of these approaches has its own ben-

efits and drawbacks. Lately, deep learning-based dual

enhancement such as InDuDoNet [6] has seen the

best results and can be considered state-of-the-art.

The common thing across a number of works in dif-

ferent ways and categories is to have an estimated

value (threshold) and use that to create a metal trace

sinogram, i.e., sinogram of only the metals present.

This work attempts to tackle this problem without

using any estimates, since our dataset is composed

of CT images from all kinds of scanners and different

metals [7].

We were able to achieve results comparable to current

state-of-the-art methods, while keeping the complex-

ity to a minimum, while using a solution that does

not rely on predefined estimates, and also create a

more realistic synthetic dataset.

2. Synthetic Generated Dataset

As stated before, images with and without artifacts

of the same patient are practically unobtainable, due

to the fact that they would require scanning the

patient before and after medical intervention. Pulling

out patients metal implants and putting them under

another radiation exposure obviously isn’t realistic. In

most similar works [3, 6] a simple way of creating

metal masks and selecting metal-free images, which

are then most often combined randomly, is adopted.

This can lead to combinations that do not represent

real-world examples. We adopt a different way of

generating a synthetic dataset that should lead to

increased similarity of the synthetic data to the real

data.

This being one that requires CT scans along with

segmented teeth out of them and produces a pair of
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images with implanted metals and with or without

artifacts Fig. 3 . At the locations of the randomly

chosen teeth, there are 3 types of metal implants

generated according to the shape and size of the

chosen tooth, which are fillings, crowns, and root

canals. In this way, we can ensure that the metals

actually sit in a place that makes sense in the CT

scans.

3. Network Architecture

For our neural network, we wanted to keep the inputs

(prerequisite data) to a minimum, and so our architec-

ture ended up with having just 1 input, that being the

metal affected image, and it outputs an image with

reduced artifacts. The problem itself is very similar to

denoising or demosaicking and that is often tackled

with a convolutional neural network. First, a simple

convolutional auto-encoder-like architecture was tried.

The results achieved with that were surprisingly solid

for such a simple network. After a few iterations, we

tried a similar U-net-like [8] architecture as depicted

in Fig. 4 , that adds some residuality in the form of

skip connections, which helps us preserve the metals

and a sharper output.

Our neural network model was also trained by a novel

loss function that combines the mean absolute error,

otherwise known as the ℓ1 error, and the multiscale

structural similarity index (MS-SSIM [9]), as this

should be the best option for image restoration tasks

[10].

4. Results

For measuring our performance, we chose two popular

image quality assessment metrics, the peak-signal-

to-noise ratio (PSNR), and the structural similarity

index measure (SSIM). Using these metrics, we can

quantitatively measure the similarity of our input and

ground-truth images.

The performance in our synthetic data set can be

seen in Fig. 5 , where we were able to achieve a

near perfect SSIM (identical images result in SSIM

of 1) and a high PSNR in which the higher the value,

the better.

These results alone are not enough to reasonably

qualify our performance, so we compare them with

the state-of-the-art InDuDoNet. As we were unable

to adapt our dataset to InDuDoNet requirements, we

measured the performance of our architecture on a

publicly available subset of their dataset. This com-

parison is not the most appropriate, but it depicts

the complicated requirements of other methods com-

pared to ours. This dataset was made up of CT scans

with different metal shapes and different body parts

(lung and hip CT scans) than ours. And after being

re-trained on completely different data for only about

1000 iterations, we obtained competitive results to

their presented performance.

As quantitative results alone might not portray the

actual performance and quality of the output, it is

also good to look at the visual results in Fig. 6 .

The results are displayed for the primary focus of

this work, the 2D dimension (slices), and also for the

whole scans, where each slice is cleaned separately

and then put back together. In both results, we can

see that the artifacts are quite heavily suppressed,

but in the process of doing so, we lose some clarity

and sharpness of the image.

5. Conclusions

Our proposed method was able to achieve near state-

of-the-art results while lowering the barrier to entry

(amount of prerequisites). However, we also acknowl-

edge the room for improvement in terms of sharpness

and clarity of the output images. In the future trying

to add more residuality to our network might prove

useful, and we would also like to experiment with the

newly emerging state-of-the-art in computer vision

stable diffusion models, which haven’t been tried for

this problem yet.
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