
3
http://excel.fit.vutbr.cz

Deepfake Detection Framework

Bc. Jan Bernard*

Abstract

Deepfake creation has improved a lot in recent times and hence is a dreaded menace to society. Deepfake

detection methods have also responded with development, but there are still not enough good tools

available to the general public. This work focuses on creating a deepfake detection framework that will be

easily extended by other detection methods in the future, yet simple and accessible to the general public.

*xberna18@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The goal of this work is to examine the current state

of deepfakes, first, generally, with later focus to de-

tection methods. Based on the acquired knowledge

design and develop the deepfake detection framework

and client application utilizing it.

[Motivation] The creation of fake media and their

detection have been a problem since photography was

invented. Digital photography or video with tools such

as GIMP, Adobe Photoshop or Adobe After Effects

allows more people to create fakes than before, still

some experience in this area is needed. Tools powered

by deep learning allow unexperienced users to easily

create trusted fakes. [1]

[Problem definition] The quality of deepfakes reached

a level when a trained person or even an experienced

researcher in this field has a problem of spotting them.

Fast development allows creating realistically look-

ing assets to art photography or movie production,

unfortunately, it can be used for malicious purposes

like creating fake porn videos to blackmail people or

manipulate public via fake news. There are many

use cases where deepfakes can be applied. The re-

sults of test in Fig. 1 certainly demonstrate that

people’s recognition ability decreases significantly as

the quality of deepfakes increases [2]. [1]

It is putting huge pressure on researchers to develop

new forensics tools or any technology which will pre-

vent malicious usage of deepfakes. As mentioned

before, creating fakes is not new, and a whole field

of study engaged in spotting fakes and developing

techniques over 15 years. There are many different

deepfake types which is not making detection of those

fakes easier. You can see only two of those types in

Fig. 2.1 and Fig. 2.2 [3]. [1]

[Existing solutions] Tools for deepfake detection are

slowly getting from command line tools for experts

to online tools with user-friendly interface. There are

not many tools of this kind and some of them are not

free to use. The following lines describe two available

tools in a market.

Deepwere - Deepware company was founded to de-

velop scanner for deepfake recognition. Deepware

provides REST API with web UI 1, mobile android

application. The backend of this project with pre-

trained models is accessible on their GitHub as Python

command line tool 2.

Sensity Sensity is very similar from the user perspec-

tive to Deepware. Based on the post on Sensity blog

[4] from 2021 we can explore web UI of their applica-

tion. The application is not publicly accessible and to

obtain access, you need to request it. Unfortunately

we did not get an access to it.

[Results] In time of finishing this paper there were no

tests results yet. Master thesis describing this work in

more details will contain results of developed detecion

framework with comparison to Deepware tool. Tests

should be focused on how framework is working (time

response, resource consumption) but also accuracy

of detection.

1https://scanner.deepware.ai/
2https://github.com/deepware/deepfake-scanner

http://excel.fit.vutbr.cz
mailto:xberna18@stud.fit.vutbr.cz
https://scanner.deepware.ai/
 https://github.com/deepware/deepfake-scanner


2. Detection framework

[Architecture] The architecture must reflect that

each detection method could be developed in different

architectures. We can isolate the detection methods

from each other and wrap them into independent

services. We do not need communication among all

detection methods because they do not cooperate

or share any data. In this case, the microservice

architecture meets all defined requirements.

The client application communicates directly with the

Rest API endpoint. API is responsible for handling

request, preparing and validating data, selecting which

type of processing should be used. After processing is

done, it collects all results and distributes them back

to the client application. Fig. 3.1 contains high-level

design of framework with data flow.

The architecture separates voice, image, and video de-

tection into an independent unit. Each unit contains

a processing queue. The queue is serviced by one

or multiple processing units that contain all related

detection methods as shown in Fig. 3.2.

The processing unit works as a parallel pipeline. Closer

look at design is in Fig. 3.3. Some detection methods

require input data in specific format, so the first

step is optional data preparation. Some methods are

wrapping data preparation by themselves. The next

step is the detection method that decides whether

the input data contains deepfake or not. Detection

methods are different, so are their results. That is

reason why we need to properly generalize and also

normalize the results in last step.

[Implementation] API server operates in ASP.NET

Core and it requires to have MSSQL server for sav-

ing information about requests and responses. For

communication and request queuing message broker

was used. RabbitMQ is one of most used one and

it supports different technologies for clients, for our

purpose we need .NET and Python.

Each processing has one controller which is Python

script consuming requests from particular queue and

spreading them among all detection methods via

REST API. Detection methods requires to have one

endpoint called ’detect’ which is registered in con-

troller. REST API was used because is easy to un-

derstand and also implement. Framework provides

template written in Python utilizing FastAPI package

for this purpose. This specific endpoint will execute

processing pipeline and return results back to con-

troller at the end.

When controller collects all results it send message

back to ASP.NET Core application via RabbitMQ.

All results are stored in database and provided back

to client application upon request.

Whole framework is designed to be run in Kuberentes

cluster, that means each component is docker con-

tainer with prepared Kuberentes manifest for proper

deployment.

2.1 Client application

It should allow the user to insert a file via file upload,

link, or HTML element containing a targeted file. In

Fig. 5.1 we can see type insertion selection. Similar

functionality provides two previously mentioned tools

in market. Optional improvement will be element

selection which switches the application to interactive

mode where user can point to HTML element and

application will try to retrieve metadata of image or

video directly from HTML.

Because detection framework will contain several de-

tections method we need to show the result of each

method independently. There will also be overall score

which interprets/generalizes all the results of each

method. Whole results screen can be view in Fig.

5.2.

3. Conclusions

Right now framework contains six audio different

detection methods. It is able to process given files and

return results back. Framework should be able to scale

up and down based on incoming traffic. Everything

needs to be properly tested. Accuracy of detection

highly depends on quality of detection methods which

are not in scope of this work.

Client application communicates with framework and

properly showing returned results. Even without

proper tests results we can declare that framework

and client application is working as expected. By this

we successfully met our goals of this work.

4. Acknowledgment

I would like to sincerely thank my supervisor Mgr. Kamil

Malinka Ph.D. for all the advice and insightful com-

ments. The same thanks go to consultant Ing. Anton

Firc.

I also owe a debt of gratitude to my family, espe-

cially my parents, friends for their wonderful support

throughout my studies.

References

[1] Luisa Verdoliva. Media forensics and deepfakes:

An overview. IEEE Journal of Selected Topics in

Signal Processing, 14(5):910–932, 2020.



[2] Mathias Ibsen, Christian Rathgeb, Daniel Fischer,

Pawel Drozdowski, and Christoph Busch. An

Introduction to Digital Face Manipulation, pages

3–26. Springer International Publishing, 2022.

[3] Pavel Korshunov and Sébastien Marcel. The

Threat of Deepfakes to Computer and Human

Visions, pages 97–115. Springer International

Publishing, 2022.

[4] Sensity Team. How to detect a

deepfake online: Image forensics and

analysis of deepfake videos. https:

//sensity.ai/blog/deepfake-detection/

how-to-detect-a-deepfake.

https://sensity.ai/blog/deepfake-detection/how-to-detect-a-deepfake
https://sensity.ai/blog/deepfake-detection/how-to-detect-a-deepfake
https://sensity.ai/blog/deepfake-detection/how-to-detect-a-deepfake

	Introduction
	Detection framework
	Conclusions
	Acknowledgment
	References

