
3
http://excel.fit.vutbr.cz

Optimizing KPI Processing of Smart Cities Using

Multithreading in Node.js

Onďrej Šulc*

Abstract

This article deals with the optimization of the processing of key performance indicators (abbr. KPI) in smart

cities. KPI is a special type of indicator that makes it possible to express the overall performance/success

of the entire city as accurately as possible and to identify performance factors that are key to its future

prosperity. For smart cities, the evaluation of these indicators is largely dependent on the data from the

IoT sensors that are distributed around it. This means that it is necessary to process huge amounts of data

at regular intervals. However, the procedure for such an evaluation consists of a large number of mutually

independent calculations. Thanks to this, it is very effective to use multithreading for this evaluation. This

article describes the concept of KPIs and their evaluation, as well as an example of implementation on the

Node.js platform. The principles described here were practically demonstrated on the SmartCity project

from the Logimic company, where the Node.js is also used.

*xsulco01@vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Key performance indicators (abbr. KPI) are an ef-

fective method for measuring the success of smart

cities. They make it possible to monitor the quality

of life of their residents (by measuring air quality or

noise levels). The goal of KPI is to make the output

as easy to read as possible – usually in the form of

a control board containing the results of individual

indicators. Examples of simple outputs can be seen

in Figure 1 . For example, with the smoke detec-

tor shown, it is immediately obvious that it has a

charged battery, a stable signal, a stable ambient

temperature and no alarm has been triggered. The

user can therefore easily see whether everything is

in order or whether a problem needs to be solved.

One of the important sources for calculating the KPI

of smart cities is the data coming from various IoT

sensors distributed throughout the smart city. These

sensors monitor the surrounding environment (for ex-

ample by measuring CO2, the noise level in dB, %

of air pollution) and thus generate a large amount

of valuable data that can be further processed. The

simple principle of converting this data into KPI is

illustrated in Figure 2 . It can also be seen from this

figure that the processing mostly consists of mutually

independent steps. It is the independent processing

that is the ideal property for using asynchronous and

multi-threaded execution. These enable better use

of available computing resources and increase the

efficiency of the entire processing.

2. Asynchronous execution in Node.js

In order to take advantage of asynchronous execu-

tion, it is necessary to divide parts of the code into

computationally independent blocks. According to [1]

this can be achieved by using Promise, async/await

or callback functions. Callback functions belong to

the oldest of the methods and for the purposes of

multithreading (which will be described later) they are

unsatisfactory due to the readability of the code. A

newer approach is offered by the mentioned data type

Promise. This data type introduces a completely

new concept to sequential code. It wraps an arbi-

trary action and directly ”promises” that the action

will be eventually executed – therefore breaking the

sequential execution. An object of type Promise is

always in one of the 3 control states (depending on

the completion status of the wrapped action) that

the programmer can work with. The latest versions

of Node.js allow the use of asynchronous functions.

http://excel.fit.vutbr.cz
mailto:xsulco01@vutbr.cz


These are auxiliary syntactic constructions that only

make it easier to work with objects of type Promise.

The keywords async and await are used to work with

asynchronous functions. The word async is always

added to the header of the function definition, au-

tomatically wrapping the result of the function with

the type Promise. The word await automatically

removes the wrapping type Promise from calling of

function with async. If the action awaited is not yet

completed then waiting for its completion is auto-

matically done. Asynchronous execution, however, is

always executed on a single thread if no additional

steps are made. This thread has the ability to switch

between individual blocks during the execution of the

program and thus use its time more efficiently (e.g. if

a time-consuming operation such as communication

with the database or reading from memory occurs in

one of the blocks). But in order to use more processor

cores, it is necessary to use multithreading.

3. Multithreading in Node.js

To create multiple threads, the worker threads mod-

ule is used in Node.js, which is available since version

10.5 and is described in [2]. More threads then allow

the application to use more processor cores. Indi-

vidual threads share source code, data from before

the threads were created, and access to files. On

the other hand each thread has its own registers and

stack, which are important for its independent execu-

tion. This state is shown in Figure 3 . The spawned

threads therefore run in parallel with the main thread

due to which no blocking occurs. The threads can

then be managed individually (that is, the main thread

directly determines which thread will perform which

work) or a shared work queue can be created, whereby

the required actions will then be evenly distributed

between the individual threads. These two methods

are shown in Figure 4 . The method with a shared

queue, requires the programmer to implement just

that mechanism of equal distribution of work between

threads. However, the advantage of this is easier

future scaling with the improvement of the guest sys-

tem, because then there is no need to manually add

a new thread in the source code. It is also possible

to use one of the already created libraries instead of

your own implementation of the shared queue, like

the threads.js library described in [3].

4. Implementation

An example of how it is possible to easily access

multi-threaded KPI processing is on figure 5 . It is

possible to use the just mentioned library threads.js.

The source code is divided into two modules: upper

processKPImodule.ts and lower main.ts.

The upper module describes the behavior of individual

threads. It contains a processKPI function that re-

ceives the KPI to process – the processing logic itself

is not essential now. Using the expose function, this

function is then introduced to the threads.js library.

Thanks to this, it will be possible to use this function

to assign work to threads.

The bottom module defines the behavior of the main

thread. At first it gets the KPIs and the data, nec-

essary for its processing, from the database. It then

creates individual threads using the Pool module from

the threads.js library. During creation, the module

from which the threads are to be created is specified

(ie processKPImodule.ts). When the threads are

ready, all KPIs are put into a shared queue – this hap-

pens in the first cycle. When inserting, the function

to be executed (processKPI) by the thread is speci-

fied, and in addition individual Promises are stored

so that the resulting values can be retrieved later. In-

sertion into the queue represents the ”promise” that

the given KPI will be processed by one of the threads.

In the second cycle, the keyword await is used, which

forces the main thread to wait for the completion

of all processing (Promises) in a non-blocking way.

The results are then stored in an array, which is finally

stored in the database.

5. Results

The results achievable by multithreading are described

by Amdahl’s law. According to this law, the executed

code can be divided into parallelizable and sequential

part. The expected acceleration is then dependent

on the ratio of time spent in these parts and the

number of available cores. This dependency is shown

in Figure 7 .

6. Conclusion

In the KPI processing of smart cities , the share of the

parallelizable part is very high, and despite the fact

that the specific share is influenced by the resulting

implementation and the number of measuring devices,

the issue of optimization can be easily solved by multi-

threaded processing.

Acknowledgments

I would like to thank the supervisor of my thesis Ing.

Jǐŕı Hynek, Ph.D., for his advices and motivation

during the preparation of this article. At the same

time, I would like to thank Ing. Frantǐsek Mikulu,



CTO of Logimic for the opportunity to work on the

SmartCity project and his advices around it.

References

[1] R.H. Jansen, V. Vane, and I.G. de Wolff. Type-

Script: Modern JavaScript Development. Packt

Publishing, 2016.

[2] Node.js. Node.js v20.0.0 documen-

tation, 2023. online. Dostupné z:

https://nodejs.org/dist/latest-v20.

x/docs/api/worker˙threads.html

[3] Threads.js. Threads.js documentation, 2023. on-

line. Dostupné z: https://threads.js.org/

https://nodejs.org/dist/latest-v20.x/docs/api/worker_threads.html
https://nodejs.org/dist/latest-v20.x/docs/api/worker_threads.html
https://threads.js.org/

	Introduction
	Asynchronous execution in Node.js
	Multithreading in Node.js
	Implementation
	Results
	Conclusion
	References

