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Abstract

Binary decision diagrams (BDDs) represent Boolean functions and are extensively used in formal verification,

model checking, circuit synthesis in CAD software, etc. With more variables, the BDD size grows in the

worst case exponentially, and that poses a significant concern in terms of space complexity. The aim of

this paper is to create an automata-based model for compact representation of BDDs. To achieve this,

tree automata are used. By inserting small tree automata with specific properties (boxes) into the BDD

structure, one can use their capacity for looping to cover larger repeating patterns in the BDD structure.

This model allows for approx. 10-20% smaller node counts in tested benchmarks (in most cases) compared

to the state-of-the-art models (BDDs, TBDDs, ESRBDDs). Using a tree-automata based approach allows

for creating custom tree automata suited for reducing specific patterns and thus allowing for possibly even

better space complexity reduction properties.
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1. Introduction

The main aim of this project is to develop an automata-

based framework that has potential to reduce state

space of binary decision diagrams. This approach

works using tree automata [1], so it will be called

Automata-based binary decision diagrams (ABDDs).

Essentially, by inserting instances of tree automata

from some predetermined set (a “catalogue” of tree

automata) into the structure of the binary decision

diagram, we can utilize the ability of tree automata

to loop to effectively remove some repeating patterns.

This approach allows for extendability and customiz-

ability, by simply introducing custom tree automata

into the “catalogue”.

Another goal is to evaluate the effectiveness of this

model and compare this solution to existing edge-

based reduction models. ABDDs will be copmared to

binary decision diagrams (BDDs) [2, 3], zero-reduced

BDDs (ZBDDs) [4], tagged BDDs (TBDDs) [5],

chain-reduced BDDs (CBDDs and CZDDs) [6] and

BDDs with edge-specified reductions (ESRBDDs)

[7]. All of these models (and the set of reduction

rules they use) can also be simulated using ABDDs

with some restrictions on the “catalogue” of tree

automata used for state-space reductions.

2. ABDD intricacies

A (finite) tree automaton is a tuple A= ⟨Q,Σ,∆,R⟩
where Q is a finite set of states, Σ is a ranked al-

phabet, ∆⊆Q×Σ×Q∗ is a set of transitions of the
form q −{a/n}→ (q1, . . . ,qn) (where n denotes arity
of symbol a – i.e. the amount of states the edge leads

to), and R ⊆ Q is the set of root states. Specifi-
cally, transitions of the form q −{a/0}→ () are called
leaf transitions. In order to properly utilize finite

tree automata in the context of this work, additional

information is stored in the symbols from the ranked

alphabet.

This model modifies/expands on the definition of a

finite tree automaton. It only utilizes three transition

symbols of two differing arities (0 for leaf transitions –

symbols 0 and 1, 2 for non-leaf transitions – symbol

LH). Additionally, each edge can contain information

about the variable of the source state. This intuitively

means that during a run, state can see a variable and

after performing the transition this variable is not

encountered again during the run of an ABDD. Apart

from a variable, a transition can contain information

about reductions in form of tree automata names (or

keys to a “catalogue” of used automata). Transitions

with an arity of 2 can have box “labels” on both the
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short and high parts of the edge (symbol LH is a short

to “low-high”). The target states of this transition

(or children states) that are then mapped to the

output ports of the boxes that label a part of the edge

corresponding to the box. And so, the transitions

in the ABDD store this information: source state,

transition symbol (LH, 0, 1), variable, and in case of

non-leaf (LH) transitions, boxes used on each part

of the edge and target states (children). Note that

if the edge contains boxes with arities higher than 1,

the arity of the edge symbol may not correspond with

total amount of children.

2.1 Boxes used

This project uses 7 simple tree automata, for which

a few restrictions have to apply. These include non-

empty language, trimness, one root state, non-vacuity

or non-obsoleteness, port-consistency, port-uniqueness,

unambiguity with regards to variable assignment to

rootstate and output ports. Note that these au-

tomata have not yet been instanciated with variables

(this happens during folding process). These au-

tomata will be called “boxes” in the context of this

project (as they “store” or “fold” patterns in the

decision diagram). The boxes were designed in such

a way so that they would simulate already known

reduction rules in other models (see figure 1 ).

2.2 Obtaining canonical form

There are three operations that are necessary in order

to obtain a canonical form of an ABDD.

Unfolding removes boxes from edges and replaces

them with the corresponding tree automaton with

the correct port-state mapping (see figure 2 ).

Normalization is a bottom-up determinization with

regards to the variables and saturation of the structure

with variables where it is possible to compute them

(ie. normalization remove equivalent nodes) .

Folding replaces repeating patterns (as much as pos-

sible) with the boxes in a given box order. The folding

procedure works by creating constructs similar to inter-

sections of tree automata, but they behave differently

wrt. the port transitions of the box.

Another important operations apart from these are

satisfiability testing and applying boolean operators.

These functions currently do not work with the struc-

ture that has box reductions already applied and firstly

require unfolding. Applying boolean operators over

the ABDD works by unfolding the boxes, unwinding

the cycles and then recursively calling apply on the

operands of the structure. The result then can be

normalized and folded back to obtain a canonical

result in the form of an ABDD.

3. Results

This framework was tested on a set of combina-

tional circuit benchmarks from LGSynth’91 [8]. They

were first tranfsormed into BDDs (with the help of

BuDDy 1) and then unfolded, normalized, saturated

with variables and then folded with the corresponding

box order. ABDDs were compared to other models:

BDDs, ZBDDs, TBDDs, ESRBDDs, CZDDs, CB-

DDs. The results show that the ABDD model with 7

boxes achieved the best results in terms of compact-

ness. On average, ABDDs had smaller node counts

than all other tested models (from 8.6% compared

to CBDDs up to 21% compared to ZBDDs), as can

be seen on the graphs (see figure 3 ). ABDDs used

mostly L⊕ boxes, that were introduced in this thesis,

while box H0 has not been used at all, which was

suggested in [7] (see figure 4 ). The usage is, how-

ever, strongly dependant on the box order in which

the folding is applied.

4. Conclusions and future work

This project tried to develop a framework that could

generalize various binary decision diagram models into

one, extensible framework. It achieved this by using

the properties of finite tree automata. The results

show the potential of ABDDs not only as a tool

of unifying all decision diagram models under one

framework, but also its potential to achieve better

reduction results as currently used models.

4.1 Future work

Of course, this work is only in its early stages, and

so there are a couple of things that can and should

be improved.

• better memory-management during bottom-up
algorithms (reachability, normalization),

• faster folding process,
• applying boolean operations and testing satisfi-
ability without the need for unfolding.

Other than that, there are multiple possibilities to

build upon and improve this work. Identifiying more

patterns that can be reduced with the corresponding

boxes that can reduce them. Extending it to work

with multi-terminal BDDs (MTBDDs).

1https://github.com/SSoelvsten/buddy
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