Aims and motivation

Provide an extensible and customizable automaton framework that can be used to represent Boolean functions.

- Since this model is based on tree-automata [5], it will be called Automata-based binary decision diagrams (ABDDs).
- This model should be able to generalize (or encompass) all edge-specified binary decision diagrams reduction rules from other models:
- Binary decision diagrams(BDDs or ROBDD
- Binary decision diagrams(BDDs or ROBDDs - reduced ordered BDDs),
- Tagged BDDs (TBDDs) [8]
- Chain-reduced binary decision diagrams (CBDDs, CZDDs) [4]
- Binary decision diagrams with edge-specified reductions (ESRBDDs) [1].

Develop algorithms that work with this data structure:

- Converting the data structure into a canonical form - unfolding, normalization, folding.
- Converting the data structure into a canonical form - unfolding, normatiza
- Applying Boolean operations over ABDDs (conjunction, disjunction, etc.).
- Applying Boolean op
- Experimentally evaluate the compactness of ABDDs on a set of benchmarks and compare it to other models.

Applying reductions - Tree Automata

This project uses special tree automata (in the rest of the poster they will be referred to as "boxes"), Boxes should be well-defined (this will help with obtaining a canonical form), which means that they have to have these properties:

Box properties

- Non-vacuity (or " "on--bsoleteness") - there is no port transition from the root state.

Figure 1. BDD reduction rule can be represented as box X (can encapsulate don't care chains). ZBDD reduction rule can be represented as box H_{0}. Note that H_{0} automaton has other 3 alternatives, H_{1} (has 1 instead of 0 on the output edge) and L_{0}, L_{1} - they have flipped $L H$ edges compared to H_{0} and H_{1}. L_{\oplus} is a more generally applicable reduction rule - as it
does not require a leaf node to be viable. This means it can be applied further from leaf nodes (this project also uses a H_{\oplus} does not require a leaf node to be viable. This means it can be applied
tree automaton as a reduction rule, which just has flipped $L H$ edges).

Canonization and other algorithms

For obtaining a canonical representation of an ABDD, there are three operations that need to be implemented:

1. Unfolding - removing boxes from edges and replacing them with the corresponding tree automaton with the correct port-state mapping (see 2).
2. Normalization - bottom-up determinization with regards to the variables and saturation of the structure with variables where it is possible to count them.

- After normalization, no equivalent nodes are present in the binary decision automaton structure.

Folding - replace repeating patterns with the boxes in a given box order, such that the boxes replace patterns in the maximum possible degree.

- It utilizes an operation similar to an intersection of two tree automata (an "intersectoid").
- The difference is that port transitions take prevalence over transitions and have to be put into the result.

Other than that, other important functions over the ABDD structure are:

- Testing satisfiability - combination of unfolding and tree-traversal with backtracking using variable assignment.
- Applying boolean operators - unfold inputs, unwind cycles (using variables as bounds), then use apply similarly to BDDs, and then normalize and fold into ABDD.

(a) Before unfolding.

(b) After unfolding.

Figure 2. Demonstration of a binary decision automaton unfolding. The states in blue were added during the unfolding process and are named according to the state names in boxes from figure 1.

Simulating the decision diagram models was achieved using folding with regards to these box orders:
BDDs
ESRBDDs - $\left(L_{0}, H_{0}, X\right)$
ZBDDs
$\left(H_{0}\right)$
TBDDs
$\left(X, H_{0}\right)$
ABDDs - $\quad\left(L_{0}, H_{0}, L_{1}, H_{1}, X, L_{\oplus}, H_{\oplus}\right)$

