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Aims and motivation

Provide an extensible and customizable automaton framework that can be used to represent
Boolean functions.

Since this model is based on tree-automata [5], it will be called Automata-based binary decision diagrams (ABDDs).

This model should be able to generalize (or encompass) all edge-specified binary decision diagrams
reduction rules from other models:

Binary decision diagrams(BDDs or ROBDDs– reduced ordered BDDs),

Zero-suppressed binary decision diagrams (ZBDDs) [6],

Tagged BDDs (TBDDs) [8],

Chain-reduced binary decision diagrams (CBDDs, CZDDs) [4],

Binary decision diagrams with edge-specified reductions (ESRBDDs) [1].

Develop algorithms that work with this data structure:
Converting the data structure into a canonical form–unfolding, normalization, folding.

Applying Boolean operations over ABDDs (conjunction, disjunction, etc.).

Testing satisfiability.

Experimentally evaluate the compactness of ABDDs on a set of benchmarks and compare it to other

models.

Applying reductions–Tree Automata
This project uses special tree automata (in the rest of the poster they will be referred to as “boxes”).

Boxes should be well-defined (this will help with obtaining a canonical form), which means that they

have to have these properties:

Box properties

Non-emptiness– the language of the box is non-empty.

Trimness– the box does not contain unreachable states (top-down and bottom-up).

Root-uniqueness–box has exactly one root state.

Port-consistency– for every tree from the language of the box there are the same ports used and that their amount is consisent – the number of different ports is called

arity of the box.

Port-uniqueness– every different port has exactly one state with the corresponding outgoing port-transition.

Non-vacuity (or “non-obsoleteness”) – there is no port transition from the root state.

Unambiguity wrt. the variables – if we map a variable to a root and a variable to each port-transition state, then there is at most 1 tree that such that the variable order is

followed.
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Figure 1. BDD reduction rule can be represented as box X (can encapsulate don’t care chains). ZBDD reduction rule can

be represented as box H0. Note that H0 automaton has other 3 alternatives, H1 (has 1 instead of 0 on the output edge)

and L0, L1 – they have flipped LH edges compared to H0 and H1. L⊕ is a more generally applicable reduction rule – as it

does not require a leaf node to be viable. This means it can be applied further from leaf nodes (this project also uses a H⊕
tree automaton as a reduction rule, which just has flipped LH edges).

Canonization and other algorithms
For obtaining a canonical representation of an ABDD, there are three operations that need to be

implemented:

1. Unfolding– removing boxes from edges and replacing them with the corresponding tree automaton

with the correct port-state mapping (see 2).

2. Normalization–bottom-up determinization with regards to the variables and saturation of the
structure with variables where it is possible to count them.

After normalization, no equivalent nodes are present in the binary decision automaton structure.

3. Folding– replace repeating patterns with the boxes in a given box order, such that the boxes replace
patterns in the maximum possible degree.

It utilizes an operation similar to an intersection of two tree automata (an “intersectoid”).

The difference is that port transitions take prevalence over transitions and have to be put into the result.

Other than that, other important functions over the ABDD structure are:

Testing satisfiability– combination of unfolding and tree-traversal with backtracking using variable

assignment.

Applying boolean operators–unfold inputs, unwind cycles (using variables as bounds), then use

apply similarly to BDDs, and then normalize and fold into ABDD.
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Figure 2. Demonstration of a binary decision automaton unfolding. The states in blue were added during the unfolding

process and are named according to the state names in boxes from figure 1.

Simulating the decision diagram models was achieved using folding with regards to these box orders:

BDDs– (X) ZBDDs– (H0) TBDDs– (X, H0)
ESRBDDs– (L0, H0, X) CZDDs– (H0, X) CBDDs– (X, H⊕)
ABDDs– (L0, H0, L1, H1, X, L⊕, H⊕)

Results
Benchmarks were combinational circuits from LGSynth’91 [9].

They represent 27-channel interrupt controllers, 32-bit SEC, 8-bit ALU. 16-bit SEC/DED.

Prepared into multiple BDDs using BuDDy library [7].

BDDs were unfolded, normalized, saturated with variables, and then folded using different box orders to simulate other models.

Benchmark node counts

Benchmark BDD ZBDD TBDD CZDD CBDD ESRBDD ABDD

C1355 263520 255456 263520 255392 258203 255360 231640

C1908 75111 72383 75095 70469 61918 72587 56598

C432 2009 2821 2007 2023 1578 1958 1438

C880 70645 94020 70645 70660 62608 70327 61414

Total 411285 424680 411267 398544 384307 400232 351090

Table 1. Node counts of tested benchmarks. Each node count marks the sum of multiple output functions from the

particular benchmark. ABDDs achieved the lowest node counts of all tested models.

0 5000 10000 15000 20000 25000
BDD node count

0

5000

10000

15000

20000

25000

AB
DD

 n
od

e 
co

un
t

(a) ABDD vs. BDD

0 5000 10000 15000 20000 25000
ZBDD node count

0

5000

10000

15000

20000

25000

AB
DD

 n
od

e 
co

un
t

(b) ABDD vs. ZBDD

0 5000 10000 15000 20000 25000
TBDD node count

0

5000

10000

15000

20000

25000
AB

DD
 n

od
e 

co
un

t

(c) ABDD vs. TBDD
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(d) ABDD vs. ESRBDD
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(e) ABDD vs. CZDD
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(f) ABDD vs. CBDD

Figure 3. On average, ABDDs achieved 17 % smaller node counts than BDDs (3a), 21 % less nodes than ZBDDs (3b), 17 %
smaller node counts than TBDDs (3c), 14 % less nodes than ESRBDDs (3d), 14 % less nodes than CZDDs (3e), and 8.6 %
more compact than CBDDs (3f). The smallest node counts on average (apart from ABDDs) were found in CBDDs and the

largest in ZBDDs.
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Figure 4. An overview of how often each type of box is used in ABDDs. Box H0 has not been used at all, which was

suggested in 3d, while the most often used box was the one introduced in this project –L⊕. The usage is, however,

strongly dependant on the box order in which the folding is applied.

Conclusion and Future work

A framework was developed that could generalize various binary decision diagram models.

This was achieved by using the properties of finite tree automata.

ABDDs also show potential to achieve better reduction results than currently used models.

There are many improvements and optimizations possible, as this research is in early stages:

better memory-management during bottom-up algorithms (reachability, normalization),

faster folding and normalization process,

applying boolean operations and testing satisfiability without the need for unfolding,

identifiying more patterns that can be reduced with the corresponding boxes that can reduce them,

extending it to work with multi-terminal BDDs (MTBDDs).
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