
3
http://excel.fit.vutbr.cz

Regulated Language Operations and Their Use

David Chocholatý*

Abstract

The classical finite automaton has been extended in many different ways. One of the modifications is

the general jumping finite automata which do not read the input string left to right in a standard way. Instead,

jumps can be provided over the input tape and substrings are erased. This paper introduces and studies

erasing systems as an alternative to general jumping finite automata. A significant difference compared

to the given automata is a control regular language instead of state control. Along with the introduction

of the new formal system, the paper demonstrates its properties and studies multiple applications.

*xchoch09@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The jumping finite automata were introduced in 2012

by Meduna and Zemek [1, 2], and in the past years,

they were well studied, including their applications,

for example, see [3, 4, 5, 6, 7]. However, regard-

ing how regulated finite automatons use languages

(see [2]), we can consider the new formal system,

which uses regular language for controlling the era-

sions.

The main motivation for the creation of the men-

tioned system is the study of a formal model with sim-

ilar jumping properties to the general jumping finite

automaton, which uses state control in the form

of general finite automata. The new formal system

called erasing system leaves the string work on the in-

put tape, while regular languages themselves can

be accepted by classical finite automata.

At the same time, the paper demonstrates the rela-

tions with well-known language families, the family

of shuffle languages, Dyck languages and closure

properties.

Based on the formal specification of the erasing sys-

tem, multiple applications in molecular biology, text

editors and compositional chess are shown, including

designing algorithms and presenting the implementa-

tion solution.

2. General Jumping Finite Automata

This section introduces the most general type of jump-

ing finite automata — the general jumping finite

automaton. The definitions are taken from [2].

2.1 Definitions and State Control

The definitions of the general jumping finite automa-

ton are provided in the first section of the poster,

see the following: Definition 1.1. , Definition 1.2. ,

and Definition 1.3. . The example of state control

in the form of the general finite automaton is depicted

in Figure 1.1 .

In the rest of the paper, the general jumping automa-

ton is denoted by GJFA and the family of languages

accepted by general jumping finite automata GJFA.

3. Erasing Systems

This section introduces a completely new formal sys-

tem called erasing system. The properties and rela-

tions of the family of languages accepted by erasing

systems are shown.

3.1 Definitions and Examples

The definitions of the new formal system called eras-

ing system are provided on the poster (see following:

Definition 2.1. , Definition 2.2. , Definition 2.3. ).

The input string is accepted by the erasing system

if and only if such a sequence of erasing steps exists

that the final string, which arises by the concatena-

tion of the used erasing string, belongs to the regular

language.

The Example 2.1. presents that the new formal

system can accept the well-known context-sensitive

http://excel.fit.vutbr.cz
mailto:xchoch09@stud.fit.vutbr.cz


non context-free language.

Throughout the rest of the paper, the erasing system

is denoted by ES and the family of languages accepted

by erasing systems by ES.

3.2 Relations with Specific Language Families

The second section provides the following theorems:

Theorem 3.1. , Theorem 3.2. , and Theorem 3.3.

which shows that ES can accept every Dyck or semi-

Dyck language (see more [8]). The last theorem

shows that the family of the languages, which are gen-

erated by the shuffle expressions (see [5]), and ES

are incomparable.

3.3 Relations with Well-Known Language Fami-

lies

The next big part of the work is proof of the relations

between ES and the language families from Chom-

sky’s hierarchy (see more [9], [10]). Every relation

is shown on the poster in Figure 4.1 . The surpris-

ing result is, that the ESs can’t accept every finite

language.

3.4 Closure Properties

The other differences between GJFA and ES were

proved for the closure properties of the families ac-

cepted by the specific formal model. The differences

captures the table, Table 5.1 . As can be seen,

the ES is not closed under union and reversal as GJFA.

4. Applications of the Erasing Systems

Several applications of the ESs were provided con-

cretely in the three following areas.

4.1 Bioinformatics for Molecular Biology

The ESs in the field of bioinformatics found use espe-

cially for the processing of the sequence (see the first

three points on the poster in the same section).

4.2 Text Editors

The main purpose of the use of the ESs is their

properties with Dyck languages, which can represent

the proper bracketing. Based on that, the ESs can

verify if the brackets in the text are properly written.

4.3 The N-Queens Problem

The last application of the ESs is the check of the so-

lution for the n-queens problem. If the solution is

encoded to the string in the desired shape, the pro-

posed algorithm can decide whether the input solution

is the correct solution for the n-queens problem or not.

For example, the solutions in the figures, Figure 6.1

and Figure 6.2 , are not correct.

5. Implementation of the Erasing Systems

Applications

This section presents the main algorithm of the ES

operations and explains the use of the two types

of quantifiers — greedy and lazy (see [11]).

5.1 Erasing System Algorithm

The main algorithm of the ES operations is provided

by algorithm, Algorithm 7.1 . A very interesting part

is the transformation of ES behaviour. In the algo-

rithm designing, the process of the erasings trans-

forms to the searching the state space (see [12]).

5.2 Greedy and Lazy Quantifier

The two types of quantifiers are used. Briefly, the op-

erators ∗ and + try to include as many symbols
as possible in the subexpression assigned to them.

Lazy quantifiers do the same thing in the opposite

way. The behaviour of the listed types of quantifiers

is shown on the poster in Figure 7.1 .

6. Conclusions

This work aimed to introduce a new formal system

called the erasing system (denoted by ES). The pa-

per together with the poster defines the ES itself.

At the same time, it answers questions such as what is

its accepting power or demonstrates closure prop-

erties. In the mentioned areas, surprising results

were achieved.

Subsequently, the applications of the new formal sys-

tem to real problems were introduced in the field

of bioinformatics for molecular biology, in text ed-

itors, and to verify the correctness of the solution

to a known n queens problem.

Acknowledgements

I would like to sincerely thank my supervisor prof.

RNDr. Alexander Meduna, CSc. for his help and

expert guidance. I also would like to thank Ing.

Zbyněk Křivka, PhD for his advice in the area of cur-

rent research on the theory of formal languages and

Ing. Ivana Burgetová, PhD for her recommendations

in the application of the formal system in bioinfor-

matics.

References

[1] Alexander Meduna and Petr Zemek. Jumping

finite automata. International Journal of Foun-

dations of Computer Science, 23(7):1555–1578,

2012.



[2] Alexander Meduna and Petr Zemek. Regulated

Grammars and Automata. Computer science.

Springer, New York, 1 edition, 2014.

[3] Vojtěch Vorel. On basic properties of jumping

finite automata. CoRR, abs/1511.08396, 11

2015.

[4] Vojtěch Vorel. Two results on discontinuous

input processing. volume 9777, pages 205–216,

07 2016.

[5] Henning Fernau, Meenakshi Paramasivan,

Markus L. Schmid, and Vojtěch Vorel. Char-

acterization and complexity results on jumping

finite automata. Theoretical Computer Science,

679:31–52, 2017. Implementation and Applica-

tion of Automata.

[6] Radim Kocman, Benedek Nagy, Zbyněk Křivka,

and Alexander Meduna. A jumping 5’->3’

watson-crick finite automata model. In Tenth

Workshop on Non-Classical Models of Automata

and Applications (NCMA 2018), books@ocg.at

332, pages 117–132. Austrian Computer Society,

2018.

[7] Stephen Obare, Abejide Ade-Ibijola, and George

Okeyo. Jumping finite automata for tweet com-

prehension. pages 1–7, 11 2019.

[8] Phillip G. Bradford. Efficient exact paths for

dyck and semi-dyck labeled path reachability.

CoRR, abs/1802.05239, 2 2018.

[9] Noam Chomsky. Three models for the descrip-

tion of language. IRE Transactions on Informa-

tion Theory, 2(3):113–124, 1956.

[10] Noam Chomsky. On certain formal properties of

grammars. Information and Control, 2(2):137–

167, 1959.

[11] Jan Goyvaerts and Steven Levithan. Regular

Expressions Cookbook. O’Reilly Media, Inc.,

Sebastopol, 2 edition, 8 2012.

[12] Stuart Russell and Peter Norvig. Artificial Intel-

ligence. Prentice Hall, USA, 3 edition, 2010.


	Introduction
	General Jumping Finite Automata
	Erasing Systems
	Applications of the Erasing Systems
	Implementation of the Erasing Systems Applications
	Conclusions
	References

