
MTBDDs

Figure 2: Example MTBDD (a dashed edge denotes a low successor, a solid edge
denotes a high successor)

MTBDDs (Mul�-terminal binary decision diagrams) encode
func�ons 𝑓(𝑣1, . . . , 𝑣𝑛): {0, 1}

𝑛 → 𝔻. They are a generalised
variant of ROBDDs (Reduced ordered binary decision
diagram), usually simply called BDDs, where terminals can
have an arbitrary value.
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Even though the history of quantum compu�ng dates back to the 1980s, it
is useful to simulate the behavior of quantum circuits on classical
computers as the hardware s�ll has a largely experimental character. Our
implementa�on of a quantum simulator, MEDUSA, converts input quantum
circuits specified in OpenQASM (Open Quantum Assembly Language) and
computes its end state represented as an MTBDD.
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Figure 1: The aim of quantum simula�on is to calculate the final state vector of the system

Experiments
The experiments consisted of comparing our implemented quantum
simulator MEDUSA to the current BDD-based state-of-the-art simulator
SliQSim [2] by measuring their respec�ve run�mes for various quantum
circuits – e.g., circuits implemen�ng Grover’s search algorithm (both single
and mul�-oracle) or mul�-controlled Toffoli gates.

The used �me-out was set to 100 000 seconds (27 hours 46 min 40 s,
wall-clock �me). Failed tests (either due to the �me-out limit or an error)
have the according coordinate set to the maximum possible run�me. The
axes are logarithmic.

Figure 5: Results for all the benchmark circuits

MTBDD-based quantum circuit representa�on
• Algebraic representa�on of complex numbers:

where 𝑎, 𝑏, 𝑐,𝑑,𝑘 ∈ ℤ, 𝑧 ∈ ℂ and 𝜔 = 𝑒
𝑖𝜋

4 [1, 2].

• A circuit’s state vector is represented with an MTBDD such that the leaves
contain the algebraic representa�on of the probability amplitudes.

• Gate opera�ons are applied either as universal or as permuta�on-based
update formulae for this MTBDD.

� Universal update formulae [1] – defined using the following
operators on the func�on 𝑇 𝑏𝑛−1, … , 𝑏0 : {0, 1}

𝑛 → ℂ represented
by the system’s state’s MTBDD:

� Permuta�on-based update formulae – cannot be used universally
with every gate but are less computa�onally demanding

Figure 3: Circuit to create the Bell and its resul�ng MTBDD (leaf value F denotes zero
probability amplitude)

2 𝑇𝑞𝑡 𝑏𝑛−1, … , 𝑏𝑡 , … , 𝑏0 = 𝑇 𝑏𝑛−1, … , 1, … , 𝑏0
3 𝑇𝑞𝑡 𝑏𝑛−1, … , 𝑏𝑡 , … , 𝑏0 = 𝑇(𝑏𝑛−1, … , 0, … , 𝑏0)

4 𝐵𝑞𝑡 𝑏𝑛−1, … , 𝑏0 = 𝑏𝑡
5 𝐵𝑞𝑡 𝑏𝑛−1, … , 𝑏0 = 𝑏𝑡

𝜓 = 𝛼 0 + 𝛽 1 ,

where 𝛼,𝛽 ∈ ℂ are the probability amplitudes for the respec�ve basis
states. I.e., it is a two-dimensional unit complex vector represen�ng the
probabili�es that upon measurement its value will be |0⟩ or |1⟩.

Quantum gates are used to perform opera�ons on qubits and hence alter
the system’s quantum state. They can be represented as unitary matrices,
then the update of the system’s quantum state is carried out as a matrix
mul�plica�on of the (dimension-wise modified) gate matrix with the
system’s state vector.

Quantum circuits
Quantum state. A qubit’s state 𝜓 can be in a superposi�on of the
computa�onal basis states 0 and 1

Figure 4: Some example gates and their matrix representa�on

Table 1: Universal update formulae (target qubits are denoted as 𝑞𝑡 , 𝑞′𝑡 , control qubits are
denoted as 𝑞𝑐 , 𝑞′𝑐 if the gate uses them)

Table 2: Benchmark results for a few of the most complex circuits (#Q and #Gates denote the
number of circuit’s qubits and gates respec�vely)


