
3
http://excel.fit.vutbr.cz

Matching Regexes with Back-References Using

Register Set Automata

Jan Vašák*

Abstract

Regexes with back-references are currently usually matched using backtracking algorithms, which can be

very inefficient. This work reports on an implementation of matching regexes using register set automata,

a computational model that allows deterministic representation of regexes with back-references.

*xvasak01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Back-references are a common and useful extension

of regexes. They, however, cannot be matched us-

ing traditional algorithms based on finite automata

(FAs), as FAs are not expressive enough to describe

back-references. Extensions of FAs, such as regis-

ter automata (RAs), that are powerful enough to

describe regexes with back-references are not consis-

tently determinisable.

Given these limitations, state-of-the-art regex match-

ers that support regexes with back-references use

backtracking algorithms to match them [1, 2]. How-

ever, usage of these algorithms can lead to the so-

called catastrophic backtracking, which can cause

massive slowdown in matching the regex. This can,

e.g., leave web applications making use of such regexes

vulnerable to a regular expression denial of service

(ReDoS) attack (in this scenario, the attacker would

maliciously input a string that would cause catas-

trophic backtracking, using up resources and making

the web unresponsive to other users).

Register set automata (RsAs), presented in [3], are a

computational model that can be used to determinise

a large class of RAs, making them useful for matching

regexes with back-references that can be converted

to RAs belonging to the determinisable class. Thus, a

regex matcher could use an automata-based algorithm

to match this class of regexes.

We show that given certain (unfortunate) combi-

nations of a regex and an input, even a prototype

RsA-based regex matcher (implemented in Python)

can outperform highly optimized regex matchers that

use backtracking algorithms.

2. Preliminaries

Register Automata. Register automata extend finite

automata by adding a finite set of registers. Each

register can store a symbol from the input string, or it

can be empty. On a transition, each register is either

assigned a value of the current input symbol, a value

stored in a register, or it is emptied. Transitions also

have two guard sets g= and g ̸=. The automaton

can only move over the transition if the current input

symbol is equal to the value stored in every register in

g= and is not equal to the value stored in any register

in g ̸=. We also allow sets of symbols on transitions

instead of singular symbols for convenience in regex

matching. An example of an RA can be seen in

Figure 1.

Register Set Automata. Register set automata are

the same as RAs, except the registers are replaced by

set-registers. Set-registers (often simply referred to

as registers within the context of RsAs) can hold a set

of symbols from the input string. They are updated

with a set which can contain registers and the input

symbol. Guards of an RsA transition (g∈,g /∈) are

semantically the same as RA guards, except that

membership is tested instead of equality. Figure 2

shows an example of an RsA.

Determinisation of RAs. A large class of RAs can be

determinised into deterministic RsAs (DRsAs) using

an algorithm presented in [3].

http://excel.fit.vutbr.cz
mailto:xvasak01@vutbr.cz


3. Implementation

A prototype regex matcher using an algorithm based

on RsAs was implemented in Python.

RA Construction. A simple regular expression parser

was implemented, creating an abstract syntax tree

representing the input regex. An example of such a

syntax tree with a corresponding regex is shown in

Figure 3. An RA is constructed using this syntax tree

by creating a sub-automaton for each sub-regex and

joining them together. An example of an RA created

this way is shown in Figure 4.

Determinisation and Matching An adaptation of the

determinisation algorithm was created to be better

suited for regex matching. The created RA needs

to first be preprocessed into a form accepted by our

implementation of the determinisation algorithm. See

an example of such an RA in Figure 5. If the created

RA falls into the determinisable class of RAs, an

equivalent DRsA is created. See Figure 6 for an

example of a DRsA output by the algorithm. Words

are then matched to the regex by simply running them

on the created DRsA.

4. Experiments

To show the advantages of an automata-based algo-

rithm for regexes with back-references, a particularly

hard combination of a regex and an input was chosen.

The regex being

/ˆ.*(.).*\1.*;.*;.*\1$/,

and the input words being ’a;a;a;a’, ’a;;a;a;a’,

..., ’a;994a;a;a’. The regex and the input words

were then measured on our prototype implementation

and version 3.6 of the pattern matching tool grep [4].

Graphs of the results are shown in Figures 7 and 8.

They show that the time-to-match grew exponentially

for grep, while our implementation’s time-to-match

remained almost constant (for the 1000 character

long word, grep took around 30 minutes, while our

prototype took around 0.16 seconds).

5. Conclusion and Future Work

It was shown that creating RAs from regexes and de-

terminising them into DRsAs is possible and practical,

especially for longer inputs. Furthermore, the RsA-

based algorithm for regex-matching will outperform

backtracking algorithms for certain types of regexes.

Importantly, these regexes cause extreme slowdown in

backtracking algorithms, which is an issue automata-

based algorithms do not have.

In the future, we will analyze regexes that are actually

used in practice to see how many are potentially prob-

lematic for backtracking algorithms, and how many

of those are determinisable into DRsAs. Also, an effi-

cient implementation (as opposed to the prototype

implemented for this report) for manipulating RsAs

(and by extension for matching regexes) is planned.

Acknowledgements

I would like to thank my supervisor, Ing. Onďrej Lengál

Ph.D, for providing excellent guidance and feedback

during my project practice that this submission is

based on.

References

[1] Free Software Foundation, Inc. GNU grep 3.8

manual, September 2022.

[2] Philip Hazel. Perl-compatible Regular Expressions

(revised API: PCRE2), August 2021.

[3] Sab́ına Gulč́ıková and Onďrej Lengál. Register set

automata (technical report), 2022.

[4] Free Software Foundation, Inc. Gnu grep 3.6.

online.


	Introduction
	Preliminaries
	Implementation
	Experiments
	Conclusion and Future Work
	References

