
3
http://excel.fit.vutbr.cz

Secure and efficient state preservation in Ethereum

based smart contract platforms

Martin Eřsek*

Abstract

This paper aims to reduce one of the Ethereum’s transaction processing bottlenecks - namely the state

preservation. As the state grows, the cost of the state related operation rises, which in turn decrease the

Ethereum’s potencial to process more transactions per seconds (assuming that there is no consensus level

bottleneck). This work aims to solve this problem via change of the approach for storage of ethereum state

by designing new custom authentificated dictionary called PMPT. Using this approach the FTPS metric

(explained in the paper) decline was significantly reduced. Impact on the TPS has yet to be measured

after completly finishing the integration of this PMPT approach to the Geth node implementation. This

approach can be applied to any Ethereum based blockchain in order to improve its inherent capabilities, while

also introducing the possibility of easier transactions parallel processing instead of the current sequential

approach, which can lead to even higher transaction throughput increase.

*xersek00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Motivation

As outlined by various papers [1, 2, 3, 4], Ethereum’s

current approach to its state storage is one of the

biggest bottlenecks in its transaction processing. For

reference we can have a look at the result of the

benchmark performed by the authors of the LMPT [1]

paper in the Fig. 3 . As can be seen, the amount of

accounts in the state trie directly influence ethereum’s

ability to process transactions (assuming that there

is no consensus introduced bottleneck e.g. proof of

authority chain or disabled consensus layer). This

fact about the ethereum transaction processing to-

gether with the fact that LMPT authors were able

to improve the ethereum’s performance using custom

approach for state handling, introduce an opportunity

to search for much more efficient solution for storage

preservation than the currently integrated one.

2. Storage of Ethereums state

Ethereum hold its global state which is composed of

the states of the accounts. Each account state is a

mapping from the account address to the account

state, this is shown in the Fig. 1 . Ethereum can be

viewed like a state machine which transit from the

old global state to new global state by application

of transaction. This global state is stored in the

cryptographic authenticated dictionary called Merkle

Patricia Trie, as ilustrated in the Fig. 2 . As the

amount of the accounts in this trie grows, the depth of

the trie grows with it logaritmicaly. Since computers

RAM memory is limited, accesing leafs of this trie

inherently must sooner or later miss the cached state

in the RAM and issue costly IO operation on disk

storage. This operation leads to huge IO amplification

as detaily explained in [2] which in turn result in the

results in Fig. 3 .

3. Alternative solutions

There have been proposed multiple alternative ap-

proached for the state storage. Some of them (Rain-

Block [3]) require completly reorganization of the

nodes in the network and their roles, while others

have been only theoreticaly designed but never im-

plemented (mLSM [2]). There are however two ap-

proaches worth of our attention:

3.1 LMPT

Layered Merkle Patricia Trie is an approach to sep-

arate main ethereum state trie into 3 different tries.

This tries are used as ”caches” because they are

http://excel.fit.vutbr.cz
mailto:xersek00@stud.fit.vutbr.cz


able to be efficiently loaded into RAM memory thus

they don’t produce any IO overhead, this is ilustrated

in Fig. 4 . Results seems promising, however authors

did not published any source code nor any detailed

informations about their implementation. The im-

plementation was also made for the now obsolete

ethereum client which is no longer functional nor

supported by the Ethereum’s mainnet network.

3.2 Verkle Trie

Verkle Tries [5] aims to replace the MPT authenti-

cated dictionary with a new authenticated dictionary

called Verkle Trie, which is based on Vector Com-

mitments [6]. Utilising this approach the leaf value

proofs are much smaller (as ilustrated in Fig. 5 )

allowing transition to stateless clients. The depth of

the Verkle Trie is significantly reduced (so the IO cost

is also reduced) since they are 256-ary tries instead of

hexary tries as in case of Ethereum’s MPT. However,

this approach came with its computational complexity

cost.

4. PMPT

Parallel Merkle Patricia Trie is our approach to try to

alleviate Ethereum’s storage problem. First N nibbles

of the account address are used as the index to the

array of MPTs, the choosen MPT (by the index) is

then used to retrieve/store of the account state as

ilustrated in Fig. 6 . A cryptographic commitment

in the form of Merkle Tree is build on top of these

tries in order to calculate the final hash which will be

used as the commitment to the current state (state-

Root hash). This way, the depth of the accesed tree

is reduced by N levels, while this approach also al-

low easy implementation of concurrent transaction

processing (assuming having the access to the trans-

actions access list) without need for shared memory

access handling as would be needed in the case of

usage of single MPT.

5. Evaluation

PMPT was implemented and integrated into the

Ethereum’s Geth node. Some part of integrations

are still not complemented so not all of the metrics

have been measured yet (missing TPS measurement).

A toolchain of tools for benchmarking various im-

plementations of Geth have been developed in order

to simplify the process of benchmarking of different

solutions.

5.1 Metrics

There are multiple metrics measured, namely:

• TPS - transactions per second

• FTPS - filling transactions per second

• FTIME - filling time

Benchmarking toolchain first generate a special file

containing required amount of accounts with dummy

balance, and then try to fill the state of the private

local ethereum chain with these account states. The

total time of filling FTIME is measured. Then the

filling ’transactions’ per second FTPS are calculated

as the result of diving the amount of account by the

time it takes to fill them into the Geth node. Next a

program sending transaction to random new accounts

is executed while measuring the average transaction

throughput of the Geth node resulting in metric TPS.

TPS metric represent the real transaction throughput,

however it contains a lot of overhead time made by

the communication with the geth node. FTPS metric

don’t measure the real transaction throughput rather

it measure the amount of account state changes

which can be performed during one second.

5.2 Results

The benchmarking of the three different version of

Geth node, namely the official release v.1.11.5, verkle

trie testnet release and my custom pmpt were per-

formed yielding results show in the figures Fig. 7, 8, 9 .

The decrease of performance with increasing amount

of accounts in the state trie can be observed in all

3 metrics. When examining the FTPS metric, its

increase in the first part of the chart is the result of

measuring whole time of Geth node running in init

phase not the time it took to fill the state trie. As

the state trie grows, majority of the whole running

time is spend in the process of filling of the state trie,

thus yielding ’correct’ results.

6. Contribution

In this master thesis, a set of tools for automatic

benchmarking of Geth node implementation was de-

veloped. These can be subsequently used by the

developpers trying to measure the impact of their

various optimalizations. A new approach for state

storage was proposed, implemented and almost fully

integrated (will be completed until the end of thesis)

into the Geth node. This can be used for the fur-

ther experiments or even later for production run on

private networks.

Acknowledgements

I would like to thank my supervisor Ivan Homoliak for

his help and the original idea to try this approach.



References

[1] Jemin Andrew Choi, Sidi Mohamed Beillahi,

Peilun Li, Andreas Veneris, and Fan Long. Lmpts:

Eliminating storage bottlenecks for processing

blockchain transactions. In 2022 IEEE Interna-

tional Conference on Blockchain and Cryptocur-

rency (ICBC), pages 1–9, 2022.

[2] Pandian Raju, Soujanya Ponnapalli, Evan Kamin-

sky, Gilad Oved, Zachary Keener, Vijay Chi-

dambaram, and Ittai Abraham. mlsm: Making

authenticated storage faster in ethereum. In Pro-

ceedings of the 10th USENIX Conference on Hot

Topics in Storage and File Systems, HotStor-

age’18, page 10, USA, 2018. USENIX Associa-

tion.

[3] Soujanya Ponnapalli, Aashaka Shah, Amy Tai,

Souvik Banerjee, Vijay Chidambaram, Dahlia

Malkhi, and Michael Yung Chung Wei. Rain-

block: Faster transaction processing in public

blockchains. In USENIX Annual Technical Con-

ference, 2020.

[4] Markus Schäffer, Monika Di Angelo, and Gernot

Salzer. Performance and Scalability of Private

Ethereum Blockchains, pages 103–118. 08 2019.

[5] Vitalik Butherin. Verkle trees. online, 06 2021.

[6] Dario Catalano and Dario Fiore. Vector com-

mitments and their applications. In Public-Key

Cryptography – PKC 2013, pages 55–72, Berlin,

Heidelberg, 2013. Springer Berlin Heidelberg.


	Motivation
	Storage of Ethereums state
	Alternative solutions
	PMPT
	Evaluation
	Contribution
	References

