
3
http://excel.fit.vutbr.cz

NetLoiter: A Tool for Automated Testing of Network

Applications using Fault-Injection
Michal Rozśıval supervisor: Aleš Smrčka

Abstract

Safety and security are crucial for applications communicating over the network. However, the development

of these applications is performed in an ideal environment, unlike their usage in a real-world environment,

which contains faults, like packet loss, delay, or corruption caused by poor transmission lines or cyber-attacks

are present. This paper introduces the NetLoiter, which aims to automate the simulation of these faults,

thus allowing the developers to handle them correctly. The Netloiter is deployed in hardware (MITM),

visible software (proxy), and hidden software (impacts packets directly in the system kernel using NFTables,

TC, or WFP) solutions. The main advantage of the NetLoiter is automating its workflow using its dynamic

reconfiguration in combination with its RestAPI; this, for example, allows us to find the communicating

parties’ reliability limits automatically.

michal.rozsival@vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The technologies communicating over the network

are developed mainly in a single computer or small

business network environment. This development

environment is ideal; it has almost no delay, a re-

liable connection, and packets are mostly not lost

or corrupted. However, the real-world (production)

environment has non-negligible delays caused by the

characteristics of the transmission link and processing

nodes; packets are more often discarded [1], which

may lead to disconnection or may not be established

at all; and data corruption occurs due to both SW

(bit-noise) or HW (malfunction of the communication

node) errors and cyber attacks (man-in-the-middle

attack). These situations occur in real-world commu-

nications, and not treating them can lead to safety

and security risks. For example:

• Remotely controlled vehicle – acceleration and
subsequent loss of communication.

• Client-Server communication with an unpre-
dictably behaving client (e.g., poor internet sig-

nal).

• Cyber attacks (e.g., the MITM, impacting of
selected packets or data modification).

Several tools allow the simulation of these faults by

emulating the network, such as the NetEm that in-

spired this tool. NetEm can be applied to network

interfaces on Linux systems and allows the defini-

tion of various conditions, such as packet dropping,

packet delay, or packet modification. Its shortcomings

include subjective complexity of use, the impossibil-

ity of dynamic reconfiguration, and the absence of

contextual and external information when processing

communications. [2][3]

I have developed the NetLoiter, a tool that is sim-

ple to use but has extensive functionality, inspired

mainly by real-world network scenarios. It provides

configurable ways to modify network parameters to

make it faulty. The main advantages of this tool

are its easy extensibility and automated usage via its

RestAPI, which allows us to find the limits of the

reliable behavior of the communicating parties based

on a defined scenario, see fig. 1.

NetLoiter has been successfully integrated and used

in CAMEA1 (camera systems) and Roboauto2 (tele-

operation) companies.

2. Deployment

NetLoiter is designed in three variants, one hardware,

and two software. The hardware solution is an exter-

1https://www.camea.cz/cz/
2https://roboauto.tech/

http://excel.fit.vutbr.cz
mailto:michal.rozsival@vut.cz
https://www.camea.cz/cz/
https://roboauto.tech/


(E)

flow 
definition

report

{...}

(C) (D)

{...}fault
model

NetLoiter (B)(A)

Test driver

Figure 1. Overall NetLoiter architecture.

nal device connected between the communicating sta-

tions, representing a bridge/switch (OSI/ISO Layer 2)

or an IP network router (OSI/ISO Layer 3). On the

other hand, the software solutions are run directly on

one of the communicating stations, either in a hidden

form, in which it intercepts their communication with-

out the knowledge of the communicating parties, or

in a visible form, in which TCP or UDP streams must

be redirected to the NetLoiter. NetLoiter intercepts

communication between two or more nodes. All the

traffic specified by the flow definition is sent to the

NetLoiter, where the traffic processing depends on

the rules defined by the fault model. NetLoiter can

report all the events and actions during run-time for

a more thorough analysis.

The choice of solution depends on the specific re-

quirements:

• Visible software solution – uses TCP and UDP
sockets proxy. Requires changes in communi-

cating applications; they must redirect their

communication to NetLoiter.

• Hidden software solution – uses NFTables or
Traffic Control on the Linux system and Win-

dows Filtering Platform on the Windows system.

Silently captures communication directly in the

system kernel. This solution requires elevated

user permissions to kernel access. Requires

changes in communicating applications (redi-

rection).

• Hardware solution – uses man-in-the-middle
device placed in the communication, e.g., Rasp-

berry Pi.

3. Usage

The NetLoiter targets test automation. After initial-

ization, it can be dynamically reconfigured using its

RestAPI, see fig 2.

Communication is affected by rules, which are com-

pound of the:

• Guards – additional packet filtering: EveryN,

Figure 2. The test driver can control the NetLoiter

via its RestAPI.

ICMP, IP, Port, Prob, Protocol, Time, Count,

TimePeriod, CountPeriod, Size, ...

• Actions – executed on selected packets: De-
lay, Drop, Reorder, Replicate, Restart, Finish,

Throttle, BitNoise, SocketTCP, ...

• ValueGenerators – provides non-constant val-
ues to guards/actions: Uniform, Normal, Se-

quence, ...

4. Conclusion

The paper introduced the NetLoiter tool for testing

the robustness of network applications and how they

perform in different network conditions. The tool

implements fault-injection on a network layer, simu-

lating a number of faults and attacks which unreliable

or even insecure networks may cause. NetLoiter is

modular, dynamically reconfigurable and easy to use.

Acknowledgements

I would like to thank my supervisor Ing. Ales Smrčka,

Ph.D., for his professional guidance, helpfulness, and

valuable advice.

References

[1] Carlos Alexandre Gouvea Da Silva and Car-

los Marcelo Pedroso. Mac-layer packet loss mod-

els for wi-fi networks: A survey. IEEE Access,

7:180512–180531, 2019.

[2] Linux Manual Page. NetEm - Network Emulator,

2011.

[3] Hemminger Stephen. Network emulation with

netem. In Proceedings of the 6th Australia’s

National Linux Conference, pages 1–8, 2005.


	Introduction
	Deployment
	Usage
	Conclusion
	References

