
NetLoiter

NetLoiter
A Tool for Automated Testing of Network Applications using Fault-Injection

supervisor: Ing. Aleš Smrčka, Ph.D. Bc. Michal Rozsíval [michal.rozsival@vut.cz]

Motivation
Development (ideal) environment: fast transmission, low packet loss, reliable communication, ...
Production (real) environment: communication delay, hard and soft errors, communication interruption, ...

Applications are tested in ideal conditions. Using them in a real environment may introduce new situations:
• Remotely controlled vehicle – acceleration and subsequent loss of communication
• Client-Server communication with an unpredictably behaving client (e.g., poor internet signal)
• Cyber attacks (e.g., the MITM, impacting of selected packets or data modification)

Idea
Automatic simulation of real network conditions.

(E)

flow

definition

report

{...}

(C) (D)

{...}fault
model

NetLoiter (B)(A)

Test driver

Fig. 1: Structure of the test environment with the NetLoiter.

every packet from/to port
5001 smaller than 50B

delay it for n seconds, where
n is from normal distribution
(n ∈ N (5, 1))

Fig. 2: The test driver can control the NetLoiter via its RestAPI.

Deployment
• Visible software solution – uses TCP/UDP socket proxy

Requires changes in communicating applications (redirection)
• Hidden software solution – uses NFTables, TC or WFP

Captures directly in kernel (requires elevated user permissions)
• Hardware solution – uses MITM placed in the communication

Fig. 3: HW solution using the Raspberry Pi as the man-in-the-middle.

Usage
1. Initialization of an environment (e.g., starting of tested applications)
2. Starting the NetLoiter with a flow definition to communication capturing
3. Updating the simulation scenario with the rules definition
4. Executing tests of the applications affected by the NetLoiter
5. For searching boundary setting, repeat the steps 3. and 4.

The creation of the simulation scenario can be automated!

def ru l e_prob_drop (x) :
return {

" $type " : " A l l " ,
" gua rds " : [{ " $type " : " Prob " , " x " : x }] ,
" a c t i o n s " : [{ " $type " : "Drop " }]

}

def t e s t_p rob_x_drop_b i s e c t i on (a , b , eps) :
while a + eps < b :

m = (a+b)/2
r e q u e s t s . po s t (. . . , ru l e_prob_drop (m))
i f c h e c k_ th e_ t e s t e d_app l i c a t i o n s ()

a = m + eps /2
else :

b = m − eps /2
return m

Listing 1: Automatic reconfiguration of the NetLoiter with generated rules.

Functionality
• Guards – additional packet filtering:

EveryN, ICMP, IP, Port, Prob, Protocol, Time, Count, TimePeriod,
CountPeriod, Size, ...

• Actions – executed on selected packets:
Delay, Drop, Reorder, Replicate, Restart, Finish, Throttle, BitNoise,
SocketTCP, ...

• ValueGenerators – provides non-constant values to guards/actions:
Uniform, Normal, Sequence, ...

Evaluation
Table 1: Roboauto use-case – affecting communication between the vehicle
and the remote station. Table contains the search results for the communicating

parties’ failure limits. The results were obtained automatically.
Injected fault Duplex From RS To RS
Delay for x [s] x ≥ 0.4 x ≥ 0.7 x ≥ 0.7

Drop every N N ≤ 4 N ≤ 2 N ≤ 1

Drop with prob. p p ≥ 0.4 p ≥ 0.3 p ≥ 0.95

Reorder N N ≥ 12 N ≥ 2 N ≥ 17

VALU3S HAS RECEIVED FUNDING FROM THE ECSEL JOINT UNDERTAKING UNDER GRANT AGREEMENT NO 876852. THE JOINT UNDERTAKING RECEIVES SUPPORT FROM THE EUROPEAN
UNION’S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME AND AUSTRIA, CZECH REPUBLIC, GERMANY, IRELAND, ITALY, PORTUGAL, SPAIN, SWEDEN, TURKEY.

