
3
http://excel.fit.vutbr.cz

Profiling energy consumption on Linux systems
Ondřej Míchal*

Abstract
Software resource consumption is a widely and actively researched area. However, of the many resources
in software which can be profiled, energy consumption has long been the one resource without any
generic, and yet comprehensive profilers. In the age of mobile devices and efficient processing units
the need for such profiles is continuously increasing. In this work we present methods for accurate
measurement of energy consumption of software, describe a novel open-source profiler and also design
a visualizer of the profiled data. With the profiler we then conduct a list of experiments on GNOME
Shell with various workloads to showcase its capabilities and demonstrate the usefulness of knowing
energy consumption.
*xmicha80@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

Nowadays, resource consumption of software is in-
creasingly becoming a concern for users as well as
software developers. With mobile devices dominat-
ing the electronics market the need for having op-
timal resource consumption is more than obvious.
But, the same need applies to other types of devices
as well. Personal desktops, servers (mainly in the
HPC space), IoT devices or other smart machines
need to perform efficiently as well.
There is quite a high number of different resources
a software can consume. For many of these one
can use an abundance of existing tools analysers to
cover most, if not all, use cases. However, many of
the resources are yet to be properly research. A par-
ticular resource lacking well established tooling is
energy consumption. Resources like CPU or mem-
ory are being optimized for in most software as their
are the easiest to optimize for. If a software devel-
oper had in their toolbox a tool for quick, reliable
and detailed analysis of their software energy con-
sumption, they could start optimizing the software
for optimal energy consumption as well. Ignoring
performance aspects of ones software can often lead
to overheating and in-general unfavourable execu-
tion time/energy consumed ratio which optimizing
for energy consumption could help to mitigate.
Currently, most Linux tools that support measur-
ing energy consumption do not provide detailed
enough information and lack any context, i.e., func-

tions/methods or lines of code which can help the
developer to locate the culprit of potential prob-
lems. Among the existing tools are powertop [1]
or turbostart [2]. We see this as an opportunity to
make use of current state-of-the-art technology and
existing research to create an open-source profiler
for detailed profiling of energy consumption. We be-
lieve such profiler could be used as a stepping stone
for further research, especially if employed in some
wider performance analyses project. Such a project
is Perun [3], an open-source performance version
system for continuous tracking of a project’s per-
formance developed by the VeriFIT research group
at BUT FIT.

In this work we build a prototype of an open-source
energy profiler to that is expected to be integrated
in Perun together with methods for visualizing the
profile data it generates. To monitor the energy
consumption of a system one could use an external
hardware monitor but those lack the required gran-
ularity, can only measure energy consumption as
a whole and are an uncommon external hardware.
Instead, we use a purely software solution utiliz-
ing Running Average Power Limit (RAPL), a ca-
pability introduced in modern Intel processors (in-
troduced in the Sandy Bridge processor generation)
and currently supported by some AMD processors
as well. This interfaces is proven [4, 5, 6] to pro-
vide high-quality energy consumption readings with

http://excel.fit.vutbr.cz
mailto:xmicha80@stud.fit.vutbr.cz


high level of granularity. To provide runtime con-
text to energy readings we propose to trace system
calls. Existing research [7, 8] shows the potential
of system calls to provide the needed context for
energy consumption. Implementing the results of
the mentioned research in full is out of the scope
of this work, so we use a much simpler approach
which still demonstrates the potential of the energy
profiler. To trace system calls and sample energy
consumption readings we use the eBPF instrumen-
tation framework. It allows running sandboxed pro-
grams in a privileged context like the Linux kernel.
By using eBPF we achieve high granularity of sam-
pled data by only marginally affecting the perfor-
mance of the profiled software. The profiler runs
loads eBPF programs into the kernel, samples the
data and at the end outputs a performance profile
in JSON format, which contains the sampled per-
formance events (i.e., energy consumption samples
and all traced system calls). In testing we could
sample energy consumption at a rate of thousands
of samples per second without significantly affect-
ing the profiled process’s performance. Together
with the profiler we implement a tool for visualiz-
ing the profile data created by the profiler using
Python modules Pandas, Seaborn and Matplotlib.
We build on these libraries, since they are already
supported by the Perun project and they are well-
maintained and efficient. In particular, we propose
to visalize the data using (1) heat maps (which
shows higher energy consumptions using ”warmer”
colours in grid-like graphs) and (2) waterfall graph
(that presents the consumption of different calls in
time in a single plot).
We demonstrate the profiler on a series experiments
showing its capabilities. We chose GNOME Shell, a
graphical shell, as the subject of the testing as it is a
non-trivial software making use of all general com-
ponents (CPU, RAM, GPU) and which is highly
susceptible to the overhead introduced by profilers.
For the experiments we used a single testing sce-
nario but changed the execution environment to
see how does it affect the results of the profiler,
to see how susceptible it is to noise. In particular,
we (1) run GNOME Shell without any particular
workloads, and (2) run GNOME Shell with Firefox
browser playing a YouTube video. We ran both
experiments for about 30s and then compared the
results using our visualizations. The experiments
showed that the profiler can successfully locate the
sources of high consumption of the profiled soft-
ware, and differences of the runtime environments
as well as anomalies in energy consumptions can

affect the quality of the resulting profiles.

Acknowledgements
I would like to thank my supervisors Jiří Pavela,
Ing. and Tomáš Fiedor, Ing., Ph.D. from the Ver-
iFIT performance team for their guidance, honest
feedback and support while making this work.

References
[1] Arjan van de Ven. PowerTOP, April 2023.
[2] Linus Torvalds. Torvalds/linux, April 2023.
[3] Tomas Fiedor. Perun: Lightweight Performance

Version System, July 2022.
[4] Daniel Hackenberg, Robert Schöne, Thomas

Ilsche, Daniel Molka, Joseph Schuchart, and
Robin Geyer. An Energy Efficiency Feature Sur-
vey of the Intel Haswell Processor. In 2015 IEEE
International Parallel and Distributed Process-
ing Symposium Workshop, pages 896–904, May
2015.

[5] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi,
Jukka K. Nurminen, and Zhonghong Ou. RAPL
in Action: Experiences in Using RAPL for
Power Measurements. ACM Transactions on
Modeling and Performance Evaluation of Com-
puting Systems, 3(2):9:1–9:26, March 2018.

[6] Joe A. Garcia. Exploration of Energy Consump-
tion Using the Intel Running Average Power
Limit Interface. In 2019 IEEE Space Comput-
ing Conference (SCC), pages 1–10, July 2019.

[7] Abhinav Pathak, Y. Charlie Hu, and Ming
Zhang. Where is the energy spent inside my
app?: Fine grained energy accounting on smart-
phones with Eprof. In Proceedings of the 7th
ACM European Conference on Computer Sys-
tems - EuroSys ’12, page 29, Bern, Switzerland,
2012. ACM Press.

[8] Karan Aggarwal, Chenlei Zhang,
Joshua Charles Campbell, Abram Hindle,
and Eleni Stroulia. The power of system
call traces: Predicting the software energy
consumption impact of changes. In Proceedings
of 24th Annual International Conference on
Computer Science and Software Engineering,
CASCON ’14, pages 219–233, USA, 2014. IBM
Corp.


	References

