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Efficient Reduction of Finite Automata

Veronika Molnárová

Abstract

A finite state automaton is a mathematical model generally utilized in information technology. While

each automaton denotes its language, one language can be represented by an infinite number of different

automata. To ensure efficient work with them we want to find the smallest alternative. Reduction is a

process used to get an automaton with the same language but fewer states.

In our work, we implemented and optimized three known reduction algorithms, which are the minimization of

deterministic automata, the reduction based on a relation of simulation, and the reduction by transformation

into a canonical residual automaton. These reductions were tested on a sample set of automata to compare

their results.

Moreover, we looked at the possibility of reducing finite state automata using Boolean satisfiability problem

(SAT) and quantified Boolean formula (QBF) solvers. We are presenting a set of rules for each solver for

generating a clause in conjunctive normal form (CNF), which can precisely represent the given automaton

in Boolean algebra. We used this fact to create a new method of nondeterministic automata reduction.
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1. Introduction

The concept of finite state automata (FSAs) was first

introduced in 1943 by two neurophysiologists. Since

then, this concept was further and further developed

to get the basis for the finite state automata we know

today. [1]

Reduction of the automata became an everyday part

of their usage to guarantee that the work with them

will be efficient. Generally, we can speak about two

types of automata reductions, which are the reduction

of deterministic automata(DFAs) and the reduction

of nondeterministic automata(NFAs).

DFAs are restricted to a single transition for each

symbol from a state, which can cause their size to be

exponential compared to the size of NFAs representing

the same language. As we can find the minimal

DFA through multiple algorithms, there is not much

improvement to be done.

The same algorithms cannot be applied to NFAs

without determinizing them first. As determiniza-

tion would cause the expansion of the automaton, it

would be beneficial to reduce automata directly from

their nondeterministic version. Such reduction is com-

putationally hard [2] and there are still researched new

ways of nondeterministic reduction. We looked at

two nondeterministic reductions, in particular, the

reduction using the relation of simulation [3] and the

reduction through the residual automata [4].

The article [5] presented a new way of looking at

FSAs by utilizing the SAT solvers. The main idea is

to represent the problem as a clause in CNF, which

is then solvable using the solver. Inspired by this idea,

we represented the structure of an FSA as a clause

and then expanded this idea also onto NFAs using

QBF solvers. Altogether, we created an algorithm to

use these solvers to find a smaller language-equivalent

automaton.

2. Known reduction algorithms

We implemented three variants of automata reduction,

which are the minimization of deterministic automata,

the reduction based on a relation of simulation, and

the reduction by transformation into a canonical resid-

ual automaton.

The minimization of deterministic automata finds

the smallest equivalent DFA to the given one. For this

reduction, we examined Hopcroft’s and Brzozowski’s

algorithms.
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The reduction based on a relation of simulation and

the reduction by transformation into a canonical

residual automaton reduce NFAs directly. Figures 1

and 2 show the results of testing these reductions on

a sample set of 3900 abstract regular model-checking

automata.

We can observe that residual automata’s performance

yields the best results in terms of size and runtime.

We can notice similarities between the times required

by Brzozowski’s and residual automata as both al-

gorithms use backward determinization. There are

some instances that deviate from the norm since this

process can produce automata that are exponentially

larger.

3. New reduction utilizing SAT and QBF

solvers

SAT and QBF solvers are powerful tools that were

optimized to efficiently solve the given problem in

form of a clause in CNF. We search for a way to

define an automaton as a formula in CNF and utilize

these solvers to reduce them.

Three different types of variables:

• transition variables – T1a1, T1b2,. . . ,
• initial variables – I1, I2,. . . , and,
• final variables – F1, F2,. . . ,

are used to represent the structure of the automaton

each indicating whether the specified transition, initial,

or final state exists in the automaton.

Clause for SAT solvers

Firstly we created a set of four rules using which we

can define the given DFA in Boolean algebra as a

formula in CNF.

Determinism and Completeness

We must fulfill the requirement of having a maximum

of one transition for a symbol from each state to

create a DFA. We generate each possible pair of tran-

sitions from a state and declare that the automaton

can only contain one from them. In Figure 3, these

clauses are indicated by the yellow background.

If we require the automaton to be complete, we must

include clauses forcing the automaton to have at least

one of the transitions for a symbol from each state

(clauses are indicated by the orange background).

Accepting words

We must provide instances of the words that the

automaton accepts and rejects to define the automa-

ton’s language. With DFA, we can say that the initial

state is always the state 1. Then, we construct every

potential path from the state 1 over the input word

in the automaton, declare that the ending state must

be a final state, and say that at least one of these

paths must be present. These clauses are in the DNF

because just one of them is necessary for the word to

be accepted, and a transformation to CNF is required.

In Figure 3, clauses for accepting the word ab are

indicated by the blue background.

Rejecting words

By negating clauses for accepting words, we can

define their rejection. If a path doesn’t start in state

1 or end in a final state, or if there are no such

transitions over the symbols, we declare that the

word is rejected. For example, clauses rejecting the

word ab are indicated by green color.

Clause for QBF solvers

We utilized quantified variables Qn for representing

states of the automaton instead of creating an ex-

ponential number of paths in the automaton. The

quantified variables define a binary vector correspond-

ing to the index of the state in the automaton.

Accepting words

As for SAT solvers, we generate clauses for accepting

the input word by setting the initial quantified state

to the initial variables, the ending state to the final

variables, and each pair of states to the transitions

through the expected symbol. In Figure 4 we can see

these clauses on yellow and blue backgrounds.

Rejecting words

Once again we defined the rejection as a negation of

accepting clauses. After the negation, these clauses

will be once again in DFA as the rejection must apply

to every viable path in the automaton.

Invalid combinations coverage

With a binary vector, we may be generating more

combinations for indexes than the actual number of

states of the automaton. These combinations must

be either accepted (∀) or rejected (∃) depending on
the quantifier of the given variables.
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