Adam Hrbac
Improving the GraalPy Interpreter
- GraalPy 6000«

Y

1
switch - D .

C ABI JVM » Python implementation in Java 5 ;
* Easy interop with JVM switch switch
 Bytecode interpreter
VM » JIT compilation using the Graal compiler _
 Loop unrolling for better compilation — |
optimize :
N\ AN

5

Graalpy @ * Not complete, features missing >
- Implemented async and tracing

Figure 1: Schemas of Java-Python interop
with CPython and GraalPy. Figure 2: Partial evaluation of a bytecode interpreter to allow easier optimalization.

Async Tracing

» IO multiplexing * CPython debugger API
* asyncio library De-facto standard for Python debugging
- Event loops using select/poll/epoll/... » Also used for coverage
* syntax * Callback for each executed line
- Colored functions * Need to detect line execution from bytecode

- Alternatives to synchronous constructs - for, with

Line 4 Line 5 Line 6

def fn(): while await resps.has next(): if False:
return 1 process(await resps.next()) orint(0)
. print(1)
async def FnZ() : . . Figure 7: Detecting a new line being executed.
async for resp in resps:
return 2 Line 4
process(resp)
async def fn3():
Y _ () Figure 4: Async for loops. while cond () . body()
print(fn())
Figure gf;;:ig ?u‘/:\?ti](-)ﬁs. n2 ()) Figure 8: Detecting the same line executed again.
client = Client() if True: e e e
await client.open() print(1)
. e else: I
await client.close() print(0);return None "

Figure 9: Avoiding lines not actually executed.
‘/f—‘\\\‘,// lwith open(PATH) as file:
ooecep>print ("About to run", file=file)
@biec for name in names:

ogeeg ieer] print(“Can't jump here", file=file)
egeey print("Can jump here", file=file)

async with Client() as client:

Figure 5: Async context managers.

def coro(): > e 1log.info("Or here")

Mre/ /EVENT LOOP R «— {(0, 1)} Figure 10: Detecting jumps that do not cause a stack underflow.
yield future2— 4’///// e

@J'r\n r\esult assert \V/S/ZRS/ = S = S/

Figure 6: Transfer of control flow between coroutines and event loop. if (6, , ht’ ll)le t?}f&)
asser =~ leng

create S’ by removing items from S until length(S) =
S" +— (Exc, S

Hash-Array Mapped Trie el Jumps

* Variant of an associative arra (a, (b,8)) +— S . .
y R {(n;(B,i),(b, w.snur* Non-deterministic control flow

« Immutable data structure - copy on write .Y
- Self-balacing tree via hashingpy et ger e US€0 by debuggers
Used for Task-local state B {fneat(B), (Uter SN} UR Could crash the interpreter
* - +— QU {next(B,i . .
el_se if ... then * AVOld by CheCklﬂg

| other operations with special handling

else if hasNeat(B,i) then source and destination

create S’ by removing nRemoved(B, 1) items from S
for x < 1 to nAdded(B,i) do

R I » 230/308 tracing tests pass L 8= (00,8
e S u S » 121/163 async syntax tests pass g: gfﬁi;@if}}w
* Flask and httpx work eI Ea0) i

create S’ by removing nRemovedWithJump(B, 1) items from S

° for 1 to nAddedWithJump(B,1) do
pdb can be used to debug code P p(B,i)

R +— {(nextWithJump(B,i),S")} UR
| Q <+— QU {nextWithJump(B,i)}

This work was developed under the management of Lukas Stadler -

L r;turn R

and supervision of David Kozak, as part of my internship at Oracle Labs. Algorithm 1: Analysis of bytecode for the types of stack items.

