Filtering False Positives from Static Analysers
Using Graph Neural Networks

Author: Bc. Tomas Beranek Supervisor: prof. Ing. Tomas Vojnar, Ph.D.

Proposed Solution Overview

Static analysis is commonly used in software development to detect vulnerabilities and The proposed system uses deep graph neural networks (GNNs) for ranking Infer outputs,
errors, leveraging its ability to consider all possible program paths and uncover even rarely utilizing the D2A dataset, which is not originally in graph format. The project involves
manifesting errors missed by tests. However, its major drawback is the high number of false creating a Training Pipeline to develop Graph D2A—a graph version of the D2A dataset for
positives. This work focuses on Meta Infer, a static analyzer whose results contain over 95 % GNN training. It also includes trained models for ranking Infer outputs and an Inference
false positives. The frequent need to verify these false positives often leads developers to Pipeline to generate graphs from real-world programs using Infer outputs, enabling fully
disregard the results of static analysis. The aim of this project is to enhance the utility of automatic operation and ranking of reports for real-world C programs.

static analysis by ranking the errors detected by Infer based on their likelihood of being real.

Why represent source code with ECPGs?

- Code properties, such as syntax or control flow, are best expressed with graphs. « GNNs are trained on Extended Code Property Graphs (ECPQ).

- Graphs like AST and DFG are essential for various compiler tasks, proving their usefulness. - CPGs are commonly used for vulnerability detection tasks.

- GNNs achieve top results in tasks involving error and vulnerability detection. - ECPGs enhance CPGs by incorporating data types, Call Graphs, and more.
- GNNs handle variable input sizes, which can pose problems for other NN architectures. - Various tools can generate CPG graphs from various languages.

« Numerous tools exist for transforming source code into graph formats.

/Training Pipeline

ﬂitcode

Figure 1. Training pipeline diagram.

™ N

/ Feature

P ——

aaa

Sliced

aaa

{ CPG Graph |

GIT LLVM Link

s’
Repository Generator . LM LLVM Slicer LLVM LLVM2CPG : Engineering > Dataset
: s Bitcode J %ﬁﬁ Bitcade (((@ \}LQ, Feature : r ; g
) : 1 v - .
- | E'é EE' ; Engineering ' | ¢ Model
e LLVM L=< <> | "< Phase 2 Training GNN Model
Em) - \
o2A o - oo - Nomafzaton) =24 P
! D2A Filtered Slicing Criteria ! Slicing . Normalization {m
Dataset ! Extraction ! e » Coefficients ! e y Yy,
: i Criteria Extraction Coefficients
' >_ ! !
] | Q 1
K =0 e < L
i Bitcode Generation Phay UNTEUS =9 Graph Construction Phase T Lo

= J

Z

/Inference Pipeline

Figure 2: Inference pipeline diagram.

¢ Combined / () T Sieed \ \ T \ Feature TFRecords™ \
i LLVM LLVM Slicer : LLVM . : Joern Export ' Raw ECPG Engineering : GNN Model

/C Source éapture Phase --:---.- \

Files for each

LLVM Link

 Dataset

Proccess Wrapper

I}b‘ Compile Command : ' Bitcode ! Bitcode . P P

E:'\ <> 1 iy 1 ' Ea XE r ’ ’

<>| D : . |BC i |BC>I 5 "E&n 1, i
c‘) Build Compiler ' <> : <> ' 728 ’ Sorted List

Build ::a Infer's Ca T TN : o | icing Criteri -l ------ ; A ,--J---
X pture ' Infer's Infer's Analyse v Slicing Criteria Y Slici ‘Normalization S TFGNN
Scripts Phase ! Database Phase ; List of Bugs Extraction : Cr:?:r]ig ! Coefficients ' Schema

[

_)‘ Eh Graph Construction Phase D] 1F Inference
% " -@' 5 <> Phase

| J o J

8

N

-~

1 9x GNN Layer
GNN Architecture e S |
i i i ' o | | f d GNN H
- The architecture of the best-performing model includes Albis GNN layers. ¢ Hidden ool ;' ead
. : | Stat : 00 |
. The "head" of the model combines outputs from GNN layers with context features. °)y @ o Initalzation Al > Layer | Dense ;
' Layer AsT NoDE) | ©) *) |
- TR - Layer (AST_) | |
- Node features of the input graph are used to initialize hidden states. e 4 (Dense) | s |
. e o \ Ji X) . (0,1
- The model operates over heterogeneous multigraphs, specifically ECPGs. t e | De?se #
o / N i '
(Graph) k Dense " J
Context P (4) '
Figure 3. Model architecture diagram. ;/ ____________________________
/ o ° Figure 4. Receiver Operating Characteristic Figure 5: Top N% Precision
Experimental Evaluation . —
—— libtiff
- The models are currently in the phase of architecture selection and 044 |: —— nginx
hyperparameter tuning. —— combined
- Nevertheless, results from the currently best model, whose architecture is

<
o
described above, are available. § S
« This model was trained on the httpd, libtiff, and nginx projects. 3 %
= (@)}
- Results were generated using test data from these same projects, thus this g 2
constitutes a form of self-analysis. S %
= o
- A realistic use-case scenario for this test data would look as follows: o

- Take, for example, 5 % (182 samples) of the top samples: ,,’ —— httpd AUC 0.74

- (without ranking) only 5 samples would be TP, 0.2 R —— libtiff AUC 0.84

- (with ranking) 29 samples would be TP, which is ~6x increase. ,/’ —— nginx AUC 0.88

s - combined AUC 0.84
O-O , 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate Top N% of most likely TPs

BRNO FACULTY

UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

