
http://excel.fit.vutbr.cz

Excel@FIT Poster Commentary

Jura Rusnák

Abstract

Real-time music visualizers often rely on basic FFT-based feature extraction, resulting in visuals that

poorly reflect the structure and energy of modern electronic music, especially drum and bass (D&B). This

project implements a real-time system that extracts advanced audio features including RMS, Spectral Flux,

Spectral Predictivity, and melody separation using Harmonic-Percussive Separation. These features are

integrated into the ProjectM visualizer, adding to its original rigid analyzer to enable visuals that respond

to melody, transients, and basslines. The result are visuals that accurately depict the songs energy, while

ramining engaging and interesting.

*xrusna08@stud.fit.vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Live visualizations of electronic music performances

are often disconnected from the actual musical con-

tent. While large venues may pre-sync visuals to

music, smaller clubs lack the funds to spend on pre-

generated visuals and pre-recorded sets.

Current visualizers are made to be compatible with all

genres of music. They use basic analysis to extract

features from the track. The visuals are of differing

quality. Some are too boring, others are too fast.

Furthermore, the visual may not react very well to

the track. Some detail will be inherently lost. I aim

to create a visual that will truthfully and interestingly

represent the track.

ProjectM and similar programs compute FFT and

extract max amplitudes for each of three band (Bass,

middle, treble). While computationally efficient, these

techniques ignore harmonic predictability and tran-

sients. Recent research [Lerch, Müller][1][2] shows

how RMS, spectral flux, and harmonic separation can

produce more meaningful data.

I implemented a custom analyzer inside ProjectM that

computes RMS, spectral flux (SF), spectral predictiv-

ity (SP), and simplified harmonic-percussive separa-

tion (HPS). These features are normalized, attenu-

ated, and passed to ProjectM’s visual shaders. New

presets use these values to enhance responsiveness

to melody, rhythm, and bass.

2. Feature Extraction

In order to keep the original functionality of existing

presets inside ProjectM I left the bass, middle and

treble as they are. ProjectM has a lot of preset

already made and it would be shame if they became

unusable in my version.

Figure one visualizes how the values for bass, middle

and treble are extracted from one frame of spectrum.

2.1 Root Mean Square (RMS)

Figure two shows the value of RMS over time and

it’s equation.

I adjusted the calculation of volume that was previ-

ously calculated as the mean of the bass, middle and

treble values. Instead, I used an RMS with a low-pass

filter for its calculation. RMS is a simple equation

that can be calculated from the waveform. I have

done this because I wanted to capture the energy of

the song. In D&B the highest energy sections are

the ones with the loudest bass.

2.2 Spectral Flux (SF)

Figure three shows the values of spectral flux on a

spectrum over time.

Spectral flux tracks the change in spectral energy

between consecutive frames. It is useful for detecting

transients such as drum hits. I use it in the renderer

to scale the waveform so that the drum hits are more

prominent.

http://excel.fit.vutbr.cz
mailto:xrusna08@vut.cz


2.3 Spectral Predictivity (SP)

Figure four shows the values of spectral predictivity

over time.

Spectral Predictivty calculates the consistency of the

frequency content over time. Making it suitable for

adding harshness to the visual. It also modulates a low

pass filter on waveform with a high cutoff frequency

so with the increasing value of spectral predictivity

the waveform contains more top frequencies.

2.4 Waveform and Spectrum

Along with these values the waveform and spectrum

is also sent to the renderer. I scale and filter the

waveform for more engagement.

The spectrum has a bit more going on. Specifically,

the harmonic percussive separation (HPS) algorithm

is used to punch out the transients in the spectrum. In

order to reduce latency I simplified the HPS algorithm.

Figure five shows the simplification of the HPS algo-

rithm.

In D&B the melodies are not composed of consistent

harmonic notes and include more noise, so the hori-

zontal filtering can be omitted, and just the vertical

filtering is implemented. The resulting algorithm lets

some transients pass, especially when the song does

not contain louder melodies. With more intensive

melodies the algorithm is successful at removing the

transients.

3. Integration with ProjectM Visualizer

The extracted features (RMS, SF, SP, frequency

bands, waveform and spectrum) are passed to Pro-

jectM, a MilkDrop-style visualizer. The default ana-

lyzer, which only supplies bass, mid, treble, waveform,

and spectrum was replaced with the custom analysis

pipeline.

My custom presets access the new features and use

them to control various parameters such as scale,

color, and warping. For instance, bass influences

zoom and pulse, while spectral flux creates twitchy

motion synced to drum hits.

An example preset is shown in the lower section of

the poster (figure seven), along with a code snippet

that demonstrates how these parameters are used.

4. Analyzer and Renderer

The analyzer takes in a waveform as input and spits

out an object that contains all the analysis data. This

data is then used by the renderer to move, scale, and

zoom the visual. Figure six point one and Figure six

point two shows an example preset. The preset is

color-coded for better ease of explanation.

The red and blue chunks of code represent an init code

that is executed only once when the preset is loaded

in. The more interesting yellow and green chunks

are the per frame equations that use the values from

the analyzer to move the preset. The yellow code is

linked to the blue shape code that moves the shape,

in this case an octagon that shrinks and grows based

on the middle value extracted from the track.

The green code is the global per frame code, that

zooms, rotates and sets the decay on the preset.

Decay determines how much of the previous frame is

shown on the next frame.

There are parts of the preset code that are left out.

The 2 biggest are the stock waveform and and my

custom waveform code. The stock waveform is shown

in a light green color on the preset example image. It

is drawn in dots and handles most of the movement.

Waveform is suitable for this, as it reacts to the all

of the frequencies.

The red circle in the center is my custom waveform

that adds another layer to the preset.

These waveforms are colored based on time. The

equations can be seen on the first part of the green

chunk of preset code.

5. Shaders

Shaders add another level to the preset. A shader in

my example creates a kaleidoscopic effect, by mirror-

ing a a chunk of the screen eight times.

Acknowledgements

I would like to thank my supervisor Ing. Olďrich

Plchot Ph.D. for their willingness to supervise my

unconventional idea, their help and understanding in

my time of difficult studies.

References

[1] Alexander Lerch. An Introduction to Audio Con-

tent Analysis: Applications in Signal Processing

and Music Informatics. John Wiley & Sons, Inc.,

1 edition, 2012.

[2] Meinard Müller. Fundamentals of Music Process-

ing: Audio, Analysis, Algorithms, Applications.

Springer International Publishing, 1 edition, 2015.


	Introduction
	Feature Extraction
	Integration with ProjectM Visualizer
	Analyzer and Renderer
	Shaders
	References

