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Abstract

This work introduces a static analyzer for C programs focused on verifying the correct handling of dynamically

allocated memory, specialized in programs using linked lists. The approach is based on data-flow analysis,

while memory states are represented using separation logic formulae. It is implemented in the Frama-C

framework. The tool was benchmarked on the linked lists subset of the SV-COMP benchmarks and

compared with similar verification tools. While not reaching the performance of top competitors in this

category, it is on par with most verifiers. Possible future extensions of this tool, including the integration

with another analyzer, are discussed.
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1. Introduction

Languages such as C use manual memory manage-

ment, where the programmer is responsible for cor-

rectly allocating memory and handling pointers to

these allocations. This carries the risk of causing

one of several memory safety bugs. These include

use-after-free – access to an already freed allocation,

double-free – freeing an already freed allocation, or a

memory leak, a loss of all references to an allocation

without ever freeing it. Some of these bugs are a

common cause of security vulnerabilities, so there

is a need to prevent them from reaching production

systems.

Several techniques are used to ensure the memory

safety of programs. One approach is static analysis

and formal verification. Formal verification is an

umbrella term for any method that can prove the

correctness of programs or a particular property. In

this case, the desired property is the correctness of

handling dynamically allocated memory.

One of the methods for static analysis is so-called

data-flow analysis, which involves traversing the pro-

gram’s control flow graph (CFG) and tracking all

possible values of variables in the program. In the

context of memory safety, the values we are interested

in are the targets of pointers and the data structures

in the program’s heap.

Formulae of separation logic (SL) [1, 2] are often used

for this purpose, allowing us to represent data struc-

tures in dynamic memory efficiently. The separating

conjunction operator allows us to describe disjoint

parts of the heap, and spatial predicates describe

unbounded data structures.

2. Analysis

This work implements a static analyzer capable of

verifying the memory safety of C programs, with a

focus on linked lists. It is an extension of the method

introduced in [3]. The tool is based on data-flow

analysis, and program states are represented using SL

formulae. The analysis is implemented in the Frama-C

framework [4], which provides a simplified AST of the

analyzed program, libraries for AST transformation,

and for implementing the data-flow analysis. The

Astral solver [5] is used to evaluate entailments of

SL formulae, which is necessary to find fixpoints for

loops.

The implementation itself can be found on GitHub

and consists of several parts.

2.1 Preprocessing

AST preprocessing serves multiple purposes. One

purpose is simplifying complex expressions in assign-

ments, function arguments, and conditions to make

the analysis implementation easier. Another purpose
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is to analyze the C structures defined in the program

and determine which type of linked list they describe.

This is done using a heuristic that infers the list type

from the types of the fields.

2.2 Analysis of Statements

Another part of the implementation is the analysis of

individual statements. When processing a statement,

it is necessary to modify the formulae representing the

program’s state before executing the statement so

that they describe the state after its execution. These

statements include several kinds of dereferences and

field accesses, memory allocation and deallocation,

and function calls. There is a cache for the results of

analyzing function calls called function summaries.

2.3 Simplifications of SL Formulae

Before the analysis of a new statement is started,

the formulae carried from the previous statement

are simplified. This includes, for example, removing

unreachable spatial predicates from formulae (these

are then reported as memory leaks), removing un-

necessary variables from equivalences, or renaming

variables at the end of their lexical scope.

2.3.1 Abstraction

The abstraction is a process of finding spatial pred-

icates that form a chain in a formula and merging

them into a list predicate that describes a linked list

of arbitrary length. This is needed for the conver-

gence of the analysis on unbounded data structures.

The analysis supports three types of lists – singly and

doubly linked lists, and nested lists. Both linear and

cyclic lists are supported.

3. Results

3.1 Manual Testing

The analyzer was tested on a manually created set

of test programs that work with all supported types

of lists. The tested operations include allocating lists

with nondeterministic length, iteration through the

list nodes, adding and removing nodes, reversing a

list, and deallocating a list. The analyzer was able to

verify the correctness of all these simple programs.

When bugs were introduced into these programs, the

tool was able to detect them. The detected errors

include dereferencing a pointer to deallocated memory,

dereferencing a pointer that may be null, memory

leaks, and freeing an already freed memory.

3.2 SV-COMP

Further testing was conducted on a dataset from the

SV-COMP competition, specifically on the subset

of benchmarks focused on linked lists. This dataset

contains a total of 134 programs testing a wide range

of operations on many types of lists. These programs

include, for example, sorting lists, traversal and modi-

fication of cyclic lists, or combining several types of

lists in a single program.

On this dataset, the tool can correctly analyze 77

programs (full results are available in the poster).

Compared to the winner of this subcategory, Preda-

torHP [6], this tool does not support the analysis

of pointer arithmetic. Currently, it is impossible to

represent numeric offsets into structures using SL

formulae. This prevents the successful analysis of

several dozen tests from the SV-COMP dataset.

4. Future Work

One limitation of the current method is the absence

of numeric value analysis, which prevents a more

accurate analysis of exit conditions in loops. Such

analysis would be necessary for more precise error

detection in programs.

One option is to add a simple numeric value analysis

into the tool directly. Separation logic, as imple-

mented by the Astral solver, allows for inserting SMT

terms into formulae that can represent the values of

numeric variables.

A more interesting approach is to integrate this ana-

lyzer into EVA [7], as both tools would benefit from

exchanging information during analysis. This tool

could provide EVA with more precise information

about pointers, such as the validity of dereferences

inside loops iterating on lists. EVA could, in turn,

provide more accurate values of integer variables to

analyze conditions better.

5. Conclusions

A tool for static analysis of programs focused on

linked lists was implemented. The approach is based

on data-flow analysis and uses separation logic to

represent program states. The tool was tested on

the SV-COMP benchmark and passed most expected

tests.
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