
https://excel.fit.vutbr.cz

MatteOS

Matěj Bucek*

Abstract

This work focuses on the design and implementation of a simple operating system for the RISC-V

architecture in C++. The system utilizes OpenSBI and U-Boot for bootstrapping and provides fundamental

functionality, including memory management and protection, process scheduling, device drivers, and partial

support for the FAT32 file system. The result of this work is a functional operating system kernel that

enables multitasking and basic hardware interaction. The main contribution of this work is the creation of

an open platform for RISC-V experimentation and low-level software development.

*xbucek17@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The growing popularity of the RISC-V architecture

in recent years has sparked significant interest across

both industry and academia. Its openness, extensi-

bility, and potential to rival established architectures

like x86 and ARM make it a compelling platform for

research and education. Despite this momentum,

accessible resources for learning low-level system pro-

gramming on RISC-V remain limited. There is a

strong need for educational tools that provide hands-

on experience while remaining simple enough to be

understood and extended.

Existing operating systems with RISC-V support, such

as Linux, are often too complex and difficult to grasp

for developers new to this field. While many OS

development tutorials exist, they are typically either

x86-focused, overly simplistic, or tailored to a specific

hardware configuration with no real device detection.

This creates a steep barrier for those who wish to

explore RISC-V or dive into operating system devel-

opment.

A few educational projects and tutorials for RISC-V

exist, such as the OS blog by Stephen Marz [1], which

serves as a solid starting point. It introduces core

RISC-V concepts, memory management, interrupt

handling, processes, and even a block device driver.

Although an excellent resource, it has limitations: it

does not use a bootloader, runs entirely in the so-

called machine mode (M-mode), lacks dynamic device

detection, and relies heavily on hard-coded addresses.

This work presents a minimal yet functional operating

system kernel for the RISC-V architecture, imple-

mented in C++. It aims to strike a balance between

simplicity and realism, offering a manageable code-

base while supporting essential OS features. The

system includes memory management and protection,

process scheduling, basic device drivers, partial FAT32

file system support, and more (see Figure 1. ). It

leverages industry-relevant technologies and standards

such as OpenSBI, U-Boot, Flattened Device Tree

(FDT), VirtIO, PLIC, UART (NS16550A), thereby in-

creasing its practical relevance and educational value.

The primary contribution of this work is the devel-

opment of an open, educational operating system

for RISC-V that enables students and developers to

explore kernel development in a real-world context.

It offers hands-on experience with key subsystems

and hardware interfaces, bridging the gap between

oversimplified tutorials and overly complex production

systems. By focusing on clarity and modularity, the

system serves as a practical platform for experimen-

tation, teaching, and further development in the field

of low-level RISC-V software.

2. Technologies

The core operating system is written in C++, com-

plemented by RISC-V Assembly for low-level compo-

nents. The use of an object-oriented design aligns well

with the modular structure required in an operating

system.

https://excel.fit.vutbr.cz
mailto:xbucek17@stud.fit.vutbr.cz


QEMU serves as the virtualization platform. It was

the first emulator to support RISC-V and integrates

well with the other components of the system. Open-

SBI acts as a RISC-V standard supervisor interface,

providing a hardware abstraction layer that simplifies

and accelerates OS development.

U-Boot, recommended for use with OpenSBI in the

FW DYNAMIC configuration, works seamlessly within

this architecture. The Flattened Device Tree (FDT)

provides a standard method of hardware description,

allowing the system to automatically detect and con-

figure attached devices—an approach commonly used

in embedded environments.

Finally, VirtIO is employed for efficient device virtual-

ization, offering a standardized interface for emulated

hardware components.

3. Architecture

MatteOS is a monolithic kernel that runs a shell as

a userspace process. Internally, the kernel is orga-

nized into several distinct subsystems, as illustrated

in Figure 1 . The memory management subsystem

is responsible for paging and kernel memory block

allocation. System management maintains essential

system information and includes a built-in timer. The

device and driver subsystem implements support for

several hardware components, including drivers for

the SiFive PLIC, NS16550A UART, and VirtIO block

devices. For device discovery, MatteOS relies on the

DeviceTree protocol and uses the SBI (Supervisor Bi-

nary Interface) for platform-specific interactions. Pro-

cess management in MatteOS is thread-based—each

process consists of one or more threads, which are

scheduled independently by the kernel. The Virtual

File System (VFS) abstracts access to file systems

and provides a consistent interface for implementing

new ones. At present, support is available for FAT32

and a custom in-memory file system, RamFS. Finally,

the interrupt management subsystem handles the con-

figuration and abstraction of interrupt controllers. It

defines how interrupts are processed and enables con-

text switching, which allows the kernel to transition

between userspace and kernelspace execution.

4. Achievements

The entire boot process was successfully configured

and implemented in MatteOS, utilizing U-Boot and

OpenSBI on the QEMU platform. All subsystems

shown in Figure 1. were at least partially imple-

mented. The Memory Manager handles physical

memory allocation and address-space virtualization

using three-level page tables, and provides a dedicated

kernel memory allocator.

The Device Tree (FDT) is used for automatic hard-

ware detection and configuration. Devices and drivers

are managed through Device and Driver Managers,

with support for block devices, console devices, and

the interrupt controller. Drivers were implemented for

VirtIO block devices, the NS16550A serial console,

and the PLIC interrupt controller.

The Virtual File System (VFS) supports two backends:

a partially implemented FAT32 driver and RamFS, a

memory-based file system for virtual files, directories,

and device interaction.

Support for processes, context switching, and system

calls was also implemented. The Process Manager

handles creation and memory mapping of processes,

while the Scheduler uses the Round-Robin algorithm.

Timekeeping and timed interrupts are provided by the

Timer subsystem. A simple shell interface demon-

strates user interaction with the system.

The Figure 4. illustrates the interaction with Mat-

teOS after a successful boot, showcasing a simple

command-line interface. Two user processes are exe-

cuted: the first is a background process that prints

”Hello from dummy process!”, attempts to open

the file hello.txt from the FAT32 file system, and

reports the success of this operation. It then contin-

ues to run in the background, periodically confirming

its activity.

The second process runs in the foreground and pro-

vides a simple shell interface. It supports commands

such as excel, prints ”Hi, Excel@FIT!”, and also

stats, which displays a summary of basic system

statistics.

5. Future goals

Future development of MatteOS aims to include

an ELF loader and a system library accessible from

userspace to support more complex applications. The

FAT32 file system will be fully implemented, and

VirtIO support extended to additional device types.

Plans also include creating a custom IDL for code

generation and implementing the necessary drivers to

enable booting on the MPi-MQ1PL platform.

Acknowledgements

I would like to thank my supervisor prof. Ing. Tomáš

Vojnar, Ph.D. for his valuable help and advice.



References

[1] Stephen Marz. The adventures of os: Making a

risc-v operating system using rust. online, 2019.

https://osblog.stephenmarz.com/.

https://osblog.stephenmarz.com/

	Introduction
	Technologies
	Architecture
	Achievements
	Future goals
	References

