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Introduction

Developing an operating system is a complex task, requiring a deep understanding of

the CPU architecture, memory management, process scheduling, and hardware inter-

action. Existing OSs like Linux are powerful but also highly complex, making them diffi-

cult to grasp as a whole.

MatteOS is a lightweight, modular operating system designed for RISC-V, offering a

clean and more educational approach. It bridges the gap between overly simplistic OS

tutorials and full-fledged kernels, providing a foundation for learning, experimenting,

and exploring modern RISC-V features.
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The Boot Flow

MatteOS uses U-Boot and OpenSBI in a multi-stage bootloader setting.
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The DeviceTree

/

compatible: riscv-virtio

model: riscv-virtio, qemu

memory@80000000

device_type: memory

reg: 0x00000000 0x80000000 0x00000000 0x80000000

cpus

timebase-frequency:  0x00989680

soc

compatible: simple-bus

cpu@0

device_type: cpu

reg: 0x00000000

status: okay

compatible: riscv

riscv,isa-extensions: i, m, a, f, d, c, h

mmu-type: riscv,sv57

serial@10000000

interrupts: 0x0000000a

reg: 0x00000000 0x10000000 0x00000000 0x00000100

compatible: ns16550a

virtio_mmio@10008000

interrupts: 0x00000008

reg: 0x00000000 0x10008000 0x00000000 0x00001000

compatible: virtio, mmio

plic@c000000

interrupts: 0x0000000a

reg: 0x00000000 0x0c000000 0x00000000 0x00600000

compatible: sifive,plic-1.0.0, riscv,plic0
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Technologies

EMU
C++—Core OS development with object-oriented principles

RISC-VAssembly—Low-level routines and system calls

QEMU—Emulator for debugging and testing

U-Boot—Bootloader for initializing the system

OpenSBI—Platform specific abstraction

Flattened Device Tree (FDT)—Hardware description abstraction

VirtIO—Virtualized I/O for device interactions

Achievements

System Boot—The system boots up using a multi-stage boot process.

Subsystems Implemented—All the subsystems from the diagram of

MatteOS architecture were implemented.

Processes scheduled—Processes (threads) are scheduled using the

Round Robin algorithm.
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Future goals

ELF Loader

System Library available in Userspace

Complete FAT32 implementation

Extend VirtIO support

Own IDL for code generation

Implement drivers needed for boot onMPi-MQ1PL

Get in touch

Find more aboutMatteOS at https://matteos.mbucek.cz or use the QR code below:
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