
MatteOS
Matěj Bucek

Supervisor: prof. Ing. Tomáš Vojnar, Ph.D.

Brno University of Technology

Introduction

Developing an operating system is a complex task, requiring a deep understanding of

the CPU architecture, memory management, process scheduling, and hardware inter-

action. Existing OSs like Linux are powerful but also highly complex, making them diffi-

cult to grasp as a whole.

MatteOS is a lightweight, modular operating system designed for RISC-V, offering a

clean and more educational approach. It bridges the gap between overly simplistic OS

tutorials and full-fledged kernels, providing a foundation for learning, experimenting,

and exploring modern RISC-V features.

The Architecture

Operating system

Bootloader
(U-Boot) Shell

Memory
management

System
management Devices & Drivers

Context switching

Process & scheduling

DeviceTree & SBI VFS Interrupt
management

Kernel

Hardware

Block Device
(VirtIO)

UART
(NS16550A)

CPU PLIC

Process 1 Process 2 Process N

Figure 1.

The Boot Flow

MatteOS uses U-Boot and OpenSBI in a multi-stage bootloader setting.

ZSBL
(M-mode)

FSBL
(M-mode)

(U-Boot SPL)

SSBL
(M-mode)
(OpenSBI)

U-Boot
(S-mode)

MatteOS
(S-mode)

Jump
Load to RAM Passed in a2 register

struct
fw_dynamic_info

Runs from On-Chip
ROM
Uses On-Chip SRAM
Power-up, clock
setup and FDT in a1
(QEMU)

Runs from On-Chip SRAM
DDR initialization
Loads SSBL and U-Boot

Runs from DDR
SEE

Runs from DDR
File System support
Network booting
Boot configuration
Other features

Figure 2. [1]

The DeviceTree

/

compatible: riscv-virtio

model: riscv-virtio, qemu

memory@80000000

device_type: memory

reg: 0x00000000 0x80000000 0x00000000 0x80000000

cpus

timebase-frequency: 0x00989680

soc

compatible: simple-bus

cpu@0

device_type: cpu

reg: 0x00000000

status: okay

compatible: riscv

riscv,isa-extensions: i, m, a, f, d, c, h

mmu-type: riscv,sv57

serial@10000000

interrupts: 0x0000000a

reg: 0x00000000 0x10000000 0x00000000 0x00000100

compatible: ns16550a

virtio_mmio@10008000

interrupts: 0x00000008

reg: 0x00000000 0x10008000 0x00000000 0x00001000

compatible: virtio, mmio

plic@c000000

interrupts: 0x0000000a

reg: 0x00000000 0x0c000000 0x00000000 0x00600000

compatible: sifive,plic-1.0.0, riscv,plic0

Figure 3.

Technologies

EMU
C++—Core OS development with object-oriented principles

RISC-VAssembly—Low-level routines and system calls

QEMU—Emulator for debugging and testing

U-Boot—Bootloader for initializing the system

OpenSBI—Platform specific abstraction

Flattened Device Tree (FDT)—Hardware description abstraction

VirtIO—Virtualized I/O for device interactions

Achievements

System Boot—The system boots up using a multi-stage boot process.

Subsystems Implemented—All the subsystems from the diagram of

MatteOS architecture were implemented.

Processes scheduled—Processes (threads) are scheduled using the

Round Robin algorithm.

Figure 4.

Future goals

ELF Loader

System Library available in Userspace

Complete FAT32 implementation

Extend VirtIO support

Own IDL for code generation

Implement drivers needed for boot onMPi-MQ1PL

Get in touch

Find more aboutMatteOS at https://matteos.mbucek.cz or use the QR code below:

References

[1] Anup Patel. OpenSBI Deep Dive. 2019. URL: https://riscv.org/wp-content/
uploads/2024/12/13.30-RISCV_OpenSBI_Deep_Dive_v5.pdf.

MatteOS

https://matteos.mbucek.cz
https://riscv.org/wp-content/uploads/2024/12/13.30-RISCV_OpenSBI_Deep_Dive_v5.pdf
https://riscv.org/wp-content/uploads/2024/12/13.30-RISCV_OpenSBI_Deep_Dive_v5.pdf

	References

