
http://excel.fit.vutbr.cz

A New Interactive Algorithm For Converting a Voxel

Model To a Mesh In Unreal Engine

Pavel Balusek*

Abstract

Efficient voxel-to-mesh conversion remains a key challenge for real-time rendering in voxel engines. This

paper introduces Run Directional Voxel Meshing, an interactive algorithm that generates polygonal meshes

directly from RLE-compressed voxel data with minimal traversal overhead. The method enables seamless

dynamic updates, supporting real-time voxel model manipulation with significant memory savings. Integrated

into Unreal Engine 5.4 as a plugin using the RealtimeMeshComponent, this solution achieves reduced

memory consumption and interactive frame rates even for voxel models. Comparative benchmarks against

traditional meshing approaches validate the algorithm’s usefulness and performance advantages, paving

the way for future optimizations including dynamic LOD generation and enhanced compression strategies.

*xbalus03@stud.fit.vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Voxel models provide a powerful way to represent

volumetric data, particularly in games, simulations,

and procedural generation. However, game engines

like Unreal Engine primarily operate on polygonal

meshes, necessitating a conversion process that is

often a major performance bottleneck.

This thesis found a split in the development of voxel

engines, after popularization of voxel engines after

release of Minecraft. Academic branch about voxel

rasterization led by GigaVoxels [1] and second branch

community-driven branch led by voxel enthusiats com-

munity. This community blogs were started by Mikola

Lysenko blog [2] where he discribed basic principles

of voxel engine in Minecraft. The fundamental princi-

ple is to convert voxels into polygonal meshes. This

process was originally called meshing in voxel engines,

however after years of community development and

more general meaning of meshing it got misinter-

preted. The term for the process of converting voxel

models to a mesh is, in this thesis, called Voxel Mesh-

ing.

This thesis focuses on developing a new interactive

algorithm that can efficiently convert voxel models

into polygonal meshes while supporting real-time in-

teraction in Unreal Engine. The goal is to minimize

memory consumption, reduce polygon count, and

maintain conversion speeds suitable for interactive

applications.

Existing solution for voxel meshing is Voxel Plugin

[3]. Voxel Plugin is used in performance profiling to

measure stats of RLE Run Directional Voxel Meshing.

Rendering using different solutions can be seen in

Figure 3 .

2. Implementation

My solution introduces Run Directional Voxel Mesh-

ing, a new algorithm that processes RLE-compressed

voxel models in a single traversal, creating quads

during iteration. This method supports seamless real-

time updates and interaction while maintaining effi-

ciency and memory compactness. This process of

traversing RLE sequences and creating quads from it

can be seen in Figure 1 and Figure 2 . Also a very

important observation was made and that is an RLE

sequence can be read during mesh and written to at

the same time. This advanced possible interactivity

during meshing as can be seen in Diagram 2 . The

voxel models are represented either as flat 1D arrays

or RLE-compressed streams.

The main contributions are:

• A new voxel meshing algorithm optimized for
compressed voxel grids.

http://excel.fit.vutbr.cz
mailto:xbalus03@stud.fit.vut.cz


• Full support for interactive voxel editing and
real-time updates.

• Integration with Unreal Engine 5 as a plugin
using the RealtimeMeshComponent for efficient

rendering and collision.

• Unreal Engine framework for performance pro-
filing of voxel meshing techniques.

3. Integration to Unreal Engine

The implementation leverages Unreal Engine 5.4 [4],

C++ programming, and the RealtimeMeshCompo-

nent plugin for dynamic mesh rendering. Compression

of voxel models is achieved using Run-Length Encod-

ing (RLE) to minimize memory footprint and speed

up traversal. FastNoiseGenerator is employed to gen-

erate procedural voxel datasets for profiling. Usage

of Unreal Engine can be seen in Figure 6 where

voxels are rendered into a combined scene. Diagram

of the integration into Unreal Engine can be seen in

Diagram 1 .

Interaction with voxel models is facilitated via Un-

real Engine’s PlayerController and Blueprint scripting,

enabling dynamic voxel editing and immediate remesh-

ing.

The real-time performance is measured using Unreal

Insights, tracing CPU timing and memory usage, with

results visualized through exported CSVs processed

in Python.

4. Architecture

The system is structured around a modular Unreal

Engine plugin. Core components include:

• Voxel Model Storage: Flat arrays and RLE
streams.

• Meshing Module: Implements Run Directional
Meshing, generating quads with optional merg-

ing for optimized mesh output.

• Interaction System: Captures player inputs (e.g.,
voxel editing) and updates voxel data with im-

mediate remeshing.

• Profiling Framework: Generates structured datasets
and scenarios to test meshing algorithms under

various sparsity conditions.

• Each voxel model is divided into chunks to facil-
itate memory management and localized mesh-

ing.

•

4.1 Achievements

Multiple test scenarios were created to measure perfor-

mance of voxel meshing. Wireframe of such scenario

can be seen in Figure 5 from which Chart 1 and

Chart 2 were made.

The project successfully demonstrates:

• Possibility of real-time conversion of RLE-compressed
voxel models into meshes.

• Interactive editing of voxel models with imme-
diate visual updates.

• Visible memory savings.
• Framework for performance profiling.

The most important achivement is reducing in mem-

ory as can be seen in Chart 1 .

5. Future

Goal of this was to prove that voxel meshing from

RLE is possible with advantages and this was proven.

Howerver the algorithms need improvement in the

future and this invention may motivate other devel-

opers to improve on this initial idea. Right now the

algorithm needs optimization when it comes to reduc-

ing number of vertices as can be seen in Chart 2 .

Such future improvements may include:

• Full voxel face culling to further reduce triangle
counts without compromising speed.

• Extension of the algorithm to support dynamic
LOD generation compatible with Unreal En-

gine’s Nanite system.

• Further reduction of necessary iterations.
• Voxelization and fast terrain generation.
• Advancements in cullar automata visualization
and interaction.

• Cross-chunk culling.
• Introduction of custom compression.
• Adapting this algorithm into existing voxel en-
gines.

Acknowledgements

I would like to thank my supervisor Ing. Tomáš Milet,

Ph.D., for his support, guidance, and valuable feed-

back during the development of this thesis.)

References

[1] Cyril Crassin. GigaVoxels: A Voxel-Based Ren-

dering Pipeline For Efficient Exploration Of Large

And Detailed Scenes. PhD thesis, Grenoble Uni-

versity, 7 2011.

[2] Mikola Lysenko. Meshing in a minecraft game.

online, 6 2012.

[3] Voxel Plugin. Voxel Plugin Documentation.

[4] Epic Games. Unreal Engine 5.4 Documentation.


	Introduction
	Implementation
	Integration to Unreal Engine
	Architecture
	Future
	References

