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Abstract

Twin-width is a graph complexity measure which utilises sequences of vertex contractions to describe the

structural complexity of any given graph using a single integer. Fuzzy graphs extend the notion of crisp

graphs by assigning each vertex and edge a membership value on a real interval representing various degrees

of uncertainty. As of the writing of this thesis, no attempts have been made to expand the twin-width

notion to fuzzy graphs. The primary result of this work is the fuzzification of twin-width. This work

facilitates the fuzzification process, emphasises its properties and discusses the boundedness of the newly

presented measure, fuzzy twin-width, within certain fuzzy graph families.

*xeffen00@stud.fit.vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Many computationally difficult problems are defined

on graphs. One of the approaches to reduce this

complexity is to look at the structure of the graph

on which the problem is defined. There are multiple

graph complexity measures that capture this complex-

ity using a single integer. For certain problems, this

number can be treated as a special input (a parameter)

when we talk about how long the computation takes

(using big-O notation). The part of the computation
that becomes very large very quickly (the ’combinato-

rial blow-up’) is limited by this parameter, while the

graph size only increases the computation time at a

more manageable rate (polynomially, linearly,. . . ).

2. Computation of Twin-Width

One of these measures is called twin-width. Twin-

width is a value computed by algorithmically merging

the input graph. The algorithm works by choosing

any two vertices u,v , merging them and constructing

a new graph whose set of vertices lacks both u and

v but includes a new vertex w . In this graph, the

neighbouring vertices connected to w are those that

neighbored with u and v in the previous graph. The

edges from w to the neighbour x are then described

according to these rules [1]:

• The edge becomes black if both u and v shared
an edge with x ,

• The edge becomes red in any other situation.

The new graph with red edges (also known as trigraph)

is then merged in the same manner. This process

is applied recursively until a graph composed of only

one vertex is left [1].

In the resulting sequence of graphs, we look at all the

vertices and find the one with the most neighbours

connected via a red edge. The number of these red

neighbours is known as the width of the sequence. If

we construct all the possible contraction sequences,

compute their width and select the minimum of these

values, we get the twin-width of the input graph [1].

In the first Figure, we can observe a contraction

sequence of a graph of five vertices, which yields a

width of two. However, in Figure 2, we see another

way of merging the vertices, which results in a width

of zero, which is the twin-width of the graph.

Effectively, the algorithm for brute-force computation

processes the input graph in a DFS manner, merges

the vertices, and computes the width of the sequences

as seen in Figures 3 and 4. The complexity of this

algorithm is high. If we want to find the measure of

any graph, the brute-force method runs in 2O(n·log·n).

However, in many families, the measure is analytically

bound. For example, a path of four or more vertices

possesses a twin-width of one, and any tree can have

its twin-width valued maximally at two. To compute

whether the input graph belongs to some family in

which the twin-width value is bounded is often several

orders less complex than the brute-force algorithm.
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3. Fuzzy Graphs

To fuzzify this measure, we first need to describe

fuzzy graphs. These graphs are able to express un-

certain relations between their elements. Each vertex

composing the fuzzy graph possesses a membership

function σ. This function maps the vertex to the real

interval [0,1]. The edges of these graphs possess an

edge mapping membership function µ that maps an

edge to the same interval of [0,1] while being upper

bounded by µ(x,y)≤⊗
(
σ(x),σ(y)

)
[2]. The symbol

⊗ denotes a triangular norm that is a binary function
[0,1]× [0,1]→ [0,1]. The most common t-norm used
in fuzzy graphs for the µ constraint is the minimum

t-norm.

If we look at the Figure 5 depicting a fuzzy graph

of cats, each image of a cat (a vertex) is mapped

to the real interval [0,1]. Each pair of cats is con-

nected by an edge that is maximally valued at the

minimal value of σ of the two images it connects.

For instance, if we examine the sphynx cat and the

image of a frozen chicken, we have σ(sphynx) = 0.7

and σ(chick) = 0.1. The edge that connects them

is valued at the minimum of these two, which gives

µ(sphynx,chick) = min(0.7,0.1) = 0.1.

4. Fuzzification Process

To fuzzify the twin-width algorithm it is important to

account for the partial belonging to a set. Therefore,

there is an importance not to simply mark some edges

as red, but to allow the fuzzy (tri)graphs to possess

a partial level of redness.

The designed process utilises triangular norms and

triangular conorms. These functions are commonly

used to model fuzzy intersection and fuzzy union,

respectively. For example, if we merge two vertices

in a fuzzy graph, the total value of µ, denoted µT ,

of the new vertex and some neighbour, is calculated

using the t-conorm of the µT of the two edges which

connect the merged vertices to this neighbour. From

the value of µT we derive two components – µR,

which is the redness, and µB, which is the blackness

of an edge. The blackness is computed using the t-

norm of blackness of the two edges while the redness

is computed using the subtratction µT −µB. The
process is depicted in Figure 6.

In this manner, we construct all the possible contrac-

tion sequences, select the vertex of each sequence

with the most redness connected to it, and finally,

select the sequence of the lowest width, marking it

optimal, making the width value the final value of the

fuzzy twin-width of the input fuzzy graph.

The computation of fuzzy twin-width does not differ

much from the brute-force algorithm, as the calcula-

tion of the binary functions adds constant computa-

tional complexity. In every other way, the algorithm

remains the same. But, just as for the crisp graphs,

analytically bounding the value of fuzzy twin-width is

possible in certain fuzzy graph families. However, this

bounding is more complex as the value of twin-width

depends on each edge’s value of µ, and differs by us-

ing different t-norm calculations. This work discusses

the bounding of fuzzy paths, fuzzy cycles, fuzzy trees

and complete fuzzy graphs.

If we consider data which can be modelled using a

fuzzy graph, the fuzzy twin-width might be consid-

ered a measure of its complexity in regard to lossy

compression.

The observations of the optimal sequences and the

contraction process were made using a website-based

application. This application allows users to create

and modify a fuzzy graph while employing the brute-

force method for fuzzy twin-width calculation.

5. Conclusions

The work presents a mathematically sound way to

describe fuzzy graphs using a single integer by run-

ning the fuzzy twin-width computation. Furthermore,

the work discusses the parameter’s boundedness over

certain fuzzy graph families and presents a website

application, which can run the brute-force algorithm

on any input fuzzy graph. The apparatus presented

might be used to describe vague systems in terms of

lossy compression.
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