
http://excel.fit.vutbr.cz

GPU Acceleration of Dijkstra Algorithm

Author: Jan Fiala, xfiala63@stud.fit.vutbr.cz

Supervisor: doc. RNDr. Milan Češka Ph.D.

Abstract

The Single-Source Shortest Path (SSSP) is a fundamental graph problem concerned with determining the

shortest paths from a designated source node to all other nodes in a graph. While Dijkstra’s algorithm

provides an optimal solution for this problem in a sequential setting, its practical applicability diminishes for

large-scale, densely connected graphs comprising millions of nodes. In such cases, repeated computations

can result in execution times extending to several minutes or even hours. To address this limitation,

parallelization techniques are increasingly employed, offering a substantial reduction in computation time,

potentially bringing it down to just a few seconds.

1. Introduction

The Single-Source Shortest Path [1] (SSSP) is a fun-

damental graph problem with the goal of identifying

the shortest paths to all nodes from a specified source

node in a graph. Dijkstra’s algorithm is optimal for

solving the SSSP problem for non-negative weighted

graphs with a time complexity of O(N · logN+E) for
the sequential variant optimized through the usage of

a Fibonacci heap [2]. The Boost library [3] sequential

implementation utilizes this structure to accelerate

the computation, primarily for dense graphs. How-

ever, sequential solutions are not always practical, as

we need to repeatedly compute graphs composed of

millions of nodes. This work introduces a Novel ap-

proach to parallelizing the SSSP problem, aiming to

further accelerate computation and reduce execution

time significantly. By rethinking the parallelization

strategy, this method achieves improved performance

over state of the art parallel implementations for both

sparse and dense graph scenarios.

2. State of the Art

The GPU-based implementations by Mart́ın [4] and

Crauser [5] serve as baselines for performance com-

parison. Both approaches parallelize the settlement

phase of Dijkstra’s algorithm by identifying nodes

with the lowest tentative distances across all unset-

tled nodes. However, this strategy often limits the

number of nodes processed in each iteration, espe-

cially under wide edge weight distributions.

Crauser introduces a bucket-based system to pri-

oritize nodes with minimal distances, while Mart́ın

uses a global minimum threshold to settle nodes in

parallel. Mart́ın’s method incurs minimal synchroniza-

tion overhead and performs well under narrow weight

ranges, where bucket separation in Crauser’s method

becomes costly. Conversely, Crauser’s bucketed ap-

proach scales better with broader weight distributions

by enabling the settlement of more nodes per itera-

tion.

Figure 1 illustrates the parallel relaxation step during

node settlement in Dijkstra’s algorithm.

Figure 3 showcases a simplified behavior of the two

state of the art approaches. They can safely settle

only the lowest tentative distance node, resulting in

exploring only the top portion of the graph at the

given iteration.

3. Novel Approach

The approach behaves as if the graph was unweighted,

maximizing the GPU’s potential by using all of its

resources effectively. Such approach allows us to

explore beyond the costly edges of a graph ear-

lier, even though they are not necessarily part of the

shortest paths in the finale. This can be seen in

Figure 4 .

Current state of the art GPU implementations of

http://excel.fit.vutbr.cz
mailto:xfiala63@stud.fit.vutbr.cz


Dijkstra’s algorithm struggle with graphs exhibiting

a wide range of edge weights. These approaches

typically settle only a few, or even a single, node per

iteration, leading to limited subgraph exploration, as

shown in Figure 3 .

The approach mitigates this bottleneck by exploring

all reachable nodes, assigning tentative distances that

may not initially reflect the shortest paths. Through

careful management of concurrent updates, the al-

gorithm ensures that at least one shortest path,

referred to here as the Dijkstra path, is discovered

and propagated. As the exploration progresses, in-

correct distances are gradually corrected, converging

toward the true shortest paths. ddddddddd While

the algorithm has a higher theoretical complexity of

O(N2), it achieves significant speedups in practice by

exploiting parallelism, accepting the trade-off of re-

dundant computations due to re-settlement of nodes

upon updates.

4. Experiments

The implementations were compared on hundreds of

real world graphs, as well as on thousands of syn-

thetic ones. Both strengths and weaknesses of the

individual implementations were observed along with

the behavior of the Novel approach, with the Novel

coming on top in most of the evaluations. Boost Li-

brary’s [3] Dijkstra optimized using a Fibonacci heap

served as the sequential baseline for the evaluation.

Figure 5 shows the issue with the State of The

Art implementations, especially with the spike for the

graph with 22 963 Nodes. If the graph’s topology and

weight range is not optimal for them, they perform

significantly worse in terms of computation time for

these graphs, while the Novel mitigates the problem.

Figure 6 demonstrates the capabilities and setbacks

of the GPU parallel implementations. These graphs

were chosen as a clear example of what the issue is

and how the Novel approach clearly solves it. The

sequential implementation takes over a hundred sec-

onds for these graphs, while the Novel takes about

2 seconds. Additionally, the Novel algorithm has the

least overhead, which allows it to perform well even

in a sparse graph environment.

Figure 7 presents how the State of The Art imple-

mentations fall short of even the optimized Boost

sequential Dijkstra for sparse graphs, with the Novel

coming out on top yet again due to its almost negli-

gible overhead, being the most versatile and effective

approach for most of the graphs when compared to

the Mart́ın and Crauser variants.

4.1 Are the re-implementations competitive?

In the following figures 1 and 2, we can see the

comparison between the original implementations and

the re-implementations along with the Novel approach

and seq. BOOST vs. seq. Dijkstra with a priority

queue:

Figure 1. Baseline results of the original state of the

art implementations

Figure 2. Results of the re-implementations, seq.

BOOST Dijkstra + Novel approach

The testing environment’s hardware is very similar

in both the original papers and our evaluation case.

Thanks to that we are able to state that the re-

implementations of the State of The Art implemen-

tations are at least comparable, and that the Novel

approach steadily outperforms them in most of the

cases. All experiments were evaluated within the

same environment. The setup can be seen within the

poster itself in a small box within the ”Experiments”

section.

Acknowledgements

I would like to thank my supervisor doc. RNDr. Milan

Češka Ph.D. for the help and thoughts about the

existing bottlenecks that helped me come up with the

Novel approach to the SSSP problem, as well as his

feedback, time and patience.



References

[1] Andrew Davidson, Sean Baxter, Michael Garland,

and John D Owens. Work-efficient parallel gpu

methods for single-source shortest paths. In 2014

IEEE 28th International Parallel and Distributed

Processing Symposium, pages 349–359. IEEE,

2014.

[2] Robert E. Tarjan. Fibonacci heaps and their ap-

plications, 2000. Accessed: 2024-09-13.

[3] Jeremy Siek. Dijkstra’s shortest paths. online,

2001. Accessed: 2024-09-10.

[4] Hector Ortega-Arranz, Yuri Torres, Diego R

Llanos, and Arturo Gonzalez-Escribano. A new

gpu-based approach to the shortest path problem.

In 2013 International Conference on High Perfor-

mance Computing & Simulation (HPCS), pages

505–511. IEEE, 2013.

[5] Hector Ortega-Arranz, Yuri Torres, Arturo

Gonzalez-Escribano, and Diego R Llanos. Com-

prehensive evaluation of a new gpu-based ap-

proach to the shortest path problem. International

Journal of Parallel Programming, 43(5):918–938,

2015.


	Introduction
	State of the Art
	Novel Approach
	Experiments
	References

