
GPU Acceleration of Dijkstra Algorithm
Author: Jan Fiala Supervisor: doc. RNDr. Milan Češka Ph.D.

INTRODUCTION
Single-Source Shortest Path (SSSP) problem finds the shortest paths from a given source node
in a graph. The results are the most efficient (shortest) traversals from the source node to any
destination node in the graph. The SSSP problem is solved primarily for real world problems in
various fields such as logistics, robotics, and AI. Dijkstra’s algorithm is optimal for SSSP, as it
solves the problem with time complexity of O(N · log N + E) for non-negative weighted graphs.

Why accelerate?
– The need to compute the shortest paths for graphs with millions of nodes repeatedly.
– Sequential solution is insufficient as it takes too long when dealing with dense graphs.
– In such cases, parallelization of the computation can bring us significant acceleration.
– While the sequential takes minutes or hours, the parallel solution takes a few seconds.

STATE OF THE ART
The main idea is to choose nodes with the lowest tentative distance across all unsettled
nodes, marking them the “Next to settle“ and processing them in parallel during the settlement
phase. As the amount of such nodes is limited due to the sheer number of nodes with the lowest
tentative distance in each iteration, they cannot identify multiple nodes fitting these conditions
frequently. Therefore, being unable to take advantage of the GPU’s resources.

Both of the existing GPU implementations have an issue with processing a wide weight range, as
the wider the range, the less chance of having multiple nodes with the lowest tentative distance.
Two GPU parallelizations – Mart́ın’s [1] and Crauser’s [2] served as a baseline for evaluation.
Both were re-implemented and compared to their original’s run times to prove their comparability.

Dijkstra’s settlement phase & relaxation process
Reached unsettled nodes (nodes whose tentative distance is known, less than ∞) are processed
during the parallel settlement phase of the algorithm, relaxing edges of a node; thus, marking
the node itself settled. Such node won’t be re-settled ever again, as it was already once settled.
During the relaxation phase of a node, its neighboring nodes tentative distance is updated if
traversing an edge leading to the neighbor results in a smaller distance, hence a shorter path.

A / 0

B

C

3

7

D
3

A / 0

B / 3

C / 7

3

7

D / 3
3

Settled

Next to settle

Unsettled

Run in parallel:

Figure 1: Relaxation process during the settlement phase in parallel

NOVEL APPROACH

KEY IDEA
We improve the usage of GPU’s resources by increasing the number of nodes that are settled
in the particular iterations (i.e. the nodes that can be processed in parallel). We achieve this
by relaxing the condition of which nodes are settled: in contrast to the existing approaches, we
also settle nodes that do not have the lowest tentative distance in the current iteration. This
enables a more efficient parallelisation of the graph exploration, mitigating the bottleneck
related to the low resource utilization by the State of The Art. The relaxed condition comes at
the cost of re-settling some nodes repeatedly; thus introducing an overhead. In the experiments
section, we demonstrate that despite the overhead, our approach significantly outperforms the
sequential algorithm as well as the State of The Art approaches on a wide set of benchmarks.

Figure 2: Re-settlement of a settled node C due to an update of the shortest path

As Dijkstra always identifies only the
shortest paths during each iteration,
it initially explores only the top part
of the presented graph. As a result,
there are no additional steps after
a node is once settled, marking the
shortest identified path to the node.

Figure 4: Parallel Novel approach

Figure 3: Parallel Mart́ın/Crauser algorithm

Note that the Novel algorithm manages
to always identify at least a single path
that is the shortest, which is the same
path as the Dijkstra’s algorithm would
identify. Thanks to that, the approach
is able to ensure that correct results of
the SSSP are propagated each iteration.

EXPERIMENTSKEY OBSERVATIONS
The weight range has a significant impact on the
computation time, especially for State of The Art,
which is usually superior for a narrow weight range.
As for wide weight range, Novel Approach comes
out on top in comparison with the State of The Art.
As can be seen in Figure 6, Seq Boost takes a few
minutes, while the Novel takes barely a few seconds
without fluctuations considering the weight range.

The evaluation was done for hundreds of graphs for not only synthetic,
but also real world graphs of varied topologies and density. The main
objective was to evaluate capabilities of the algorithms in a real world
environment, as proficient synthetic results do not always translate
into sufficient capabilities in real world scenarios, which is Mart́ın’s
case. On the contrary, the Novel Approach enables massive parallelism,
as it processes any updated node each iteration, with the trade-off of
possibly performing useless computations and re-settling nodes repeatedly.

ALGORITHMS FOR THE EVALUATION
• Novel steadily outperforms State of The Art in majority of cases
• Martin is the best for a narrow weight range large dense graphs
• Crauser is the latest State of The Art parallelization of Dijkstra
• Seq-Boost is the BOOST Library sequential CPU Dijkstra

EXPERIMENTAL SETUP
GPU: GTX 1070 Pascal architecture
CPU: Intel(R) i5-9600KF CPU @ 3.7 GHz

Figure 5: Medium density dataset (weight range 1–100) Figure 6: High density synthetic graphs (224 Nodes, 45 Edges) Figure 7: Low density dataset (weight range 1–100)

References:
[1] Hector Ortega-Arranz, Yuri Torres, Diego R Llanos, and Arturo Gonzalez-Escribano. A new gpu-based approach to the shortest path problem. pages 505–511. IEEE, 2013.

[2] Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano, and Diego R Llanos. Comprehensive evaluation of a new gpu-based approach to the shortest path problem. International Journal of Parallel Programming, 43(5):918–938, 2015.


