
http://excel.fit.vutbr.cz

Static Analysis of Microservices using GraalVM

Vsevolod Pokhvalenko*

Abstract

MicroGraal is a static analysis tool based on GraalVM that extracts communication patterns from Java-

based microservice systems. This work extends its capabilities to support WebSocket and GraphQL

protocols, introduces automation for multi-service projects, and enhances the intermediate representation

based analysis to cover more patterns. The tool was evaluated on open source systems and successfully

identified and linked service communication across synchronous and asynchronous paradigms, including

STOMP and schema-based GraphQL interactions. The result is a portable and extensible platform for

static architectural analysis of modern microservice applications, offering deep insight into control flow,

message types, and service dependencies.

*xpokhv00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

[Motivation] Microservice-based systems are the de

facto standard in modern software architecture, pro-

moting modularity, scalability, and independent deploy-

ment Figure 1 . However, analyzing such systems

manually is challenging due to their distributed na-

ture and communication complexity. Tools that help

developers understand how services interact, without

executing the system, are invaluable for maintenance,

security, and optimization.

[Problem definition] Although many tools focus

on runtime observability, there is a lack of static

analysis solutions that can uncover communication

links—such as calls to REST [1], WebSocket [2], or

GraphQL [3] directly from compiled Java bytecode.

The problem is further compounded by the diversity of

communication styles and framework-specific abstrac-

tions (e.g., Spring Boot annotations, STOMP [4],

etc.).

[Existing solutions] State-of-the-art tools, such as

GraalVM, provide low-level insights into compiled Java

applications through their Intermediate Representa-

tion (IR). GraalVM’s Native Image is a technology

that compiles Java applications ahead-of-time into

standalone executables, generating an IR that can

be statically analyzed. However, these tools lack a

high-level interface for analyzing components typically

used in microservice development (e.g., endpoints,

controllers, entities). MicroGraal [5] is a proof-of-

concept tool developed for the Java Platform that

enables static extraction of service interactions from

compiled applications. Prior versions of MicroGraal

only supported REST extraction in a narrow setup,

with limited project flexibility and no support for asyn-

chronous protocols or schema-based APIs.

[Our solution] This project significantly extends Mi-

croGraal by adding support for the detection of Web-

Socket and GraphQL communication patterns, in ad-

dition to automation tools to analyze arbitrary Maven

and Gradle projects. Using the intermediate repre-

sentation of GraalVM Native Image and a custom

analysis plugin, the system reconstructs call graphs,

message endpoints, and inter-service dependencies

without execution. Figure 6

[Contributions] Key contributions include: (1) a

modular extraction system for REST, WebSocket,

and GraphQL; (2) integration with Graal IR to re-

construct rich communication metadata like message

types and topics; (3) a flexible preprocessing pipeline

with classpath resolution and project scanning; and

(4) a redesigned visualization frontend. The result

is a scalable and extensible static analysis platform

tailored to the needs of modern Java microservices.

2. System Overview

This project proposes an approach for static analysis

of communication patterns in Java-based microser-

http://excel.fit.vutbr.cz
mailto:herout@vut.cz


vices by inspecting Graal Intermediate Representation

(IR) [6] during native image compilation, without

executing the application.

Instrumentation Layer. A custom plugin Prophet is

injected into the native image build process, enabling

direct IR traversal. The plugin identifies method calls,

constants (e.g., URL strings) Figure 2 , and control

flow constructs that reveal communication patterns

across services.

Extractor Modules. Two static analyzers were imple-

mented:

• WebSocket: Identifies endpoint registration
(e.g., addHandler()), handler classes (e.g.,

WebSocketHandler), and message paths in-

cluding STOMP topics Figure 3 .

• GraphQL: Parses resolver annotations (e.g.,
@QueryMapping), operation names, and argu-

ment structures in both queries and mutations

Figure 4 .

Return/Message Type Inference. An important con-

tribution of this work is the ability to extract return

types and data transfer objects (DTOs) from the IR

graph. This allows communication edges to include

semantic metadata about transferred payloads, which

enhances linking and visualization.

Linking Phase. Detected communications are merged

into a global dependency graph. REST and Web-

Socket calls are matched by URI; GraphQL interac-

tions are linked using operation names and types.

Visualization. A React frontend renders protocol-

aware service graphs and bounded context maps. Fea-

tures such as overlays, filtering, and metadata tooltips

make analysis results navigable and visually expressive.

Figure 5

3. Results and Evaluation

To validate the system, a diverse set of microser-

vice applications was analyzed, covering REST, Web-

Socket, and GraphQL communication styles, and built

using Maven or Gradle. These projects represented

open-source use cases.

WebSocket & STOMP Architectures. Microservice

systems employing Spring’s WebSocket and STOMP

stack were used to evaluate the detection of asyn-

chronous communication. The analysis correctly iden-

tified:

• Endpoint URIs (e.g., /messages)
• Protocol-specific handler classes

• Message directions and mapped payload types
(e.g., MessageDTO)

GraphQLMicroservices. Schema-driven projects were

used to assess the extraction of GraphQL operations.

The system accurately reconstructed:

• Resolvers defined via annotations like
@QueryMapping

• Operation types (query, mutation) and names
• Argument values and return/document struc-
tures

REST Baseline. Traditional REST-based commu-

nication using synchronous clients was successfully

parsed and linked, with endpoints and client calls

matched via URI and return type inference.

Visual Analysis. The extracted data was rendered

into protocol-aware graphs, bounded context maps,

and communication overlays—revealing architectural

patterns, coupling, and missing dependencies.

Impact. The system demonstrated broad applica-

bility across more than a dozen projects. It en-

abled static recovery of inter-service dependencies,

improved visibility into communication behavior, and

provided a foundation for further architectural analy-

sis.

4. Conclusions

This work extends the MicroGraal to support modern

microservice communication beyond REST, including

WebSocket and GraphQL. By embedding static analy-

sis into the GraalVM Native Image process, it detects

communication patterns at the bytecode level using

Graal IR.

New modules support schema-aware detection of bidi-

rectional communication and operations, with en-

hanced extraction of return and message types across

services. This improves the semantic accuracy of

communication graphs.

Evaluation on diverse projects confirms its effective-

ness for analyzing asynchronous and schema-based

systems.

Acknowledgements

I would like to express my sincere gratitude to my

thesis supervisor, Ing. David Kozak, for his invaluable

guidance, support, and valuable insights throughout

the development of this project. His expertise in

static analysis and compiler technology significantly

contributed to the success of this work.



References

[1] Roy T. Fielding and Julian Reschke. Hypertext

transfer protocol (http/1.1): Semantics and con-

tent. RFC 7231, 2014. https://datatracker.

ietf.org/doc/html/rfc7231.

[2] Ian Fette and Alexey Melnikov. The web-

socket protocol. RFC 6455, 2011. https://

datatracker.ietf.org/doc/html/rfc6455.

[3] Facebook Inc. Graphql specification. https://

spec.graphql.org/October2021/, 2021.

[4] Jeff Coumans et al. Stomp protocol specifica-

tion, version 1.2. https://stomp.github.io/

stomp-specification-1.2.html, 2012.

[5] R. Hutcheson, H. Gao, D. Kozak, R. Bonett,

and H. Sajnani. Software architecture reconstruc-

tion for microservice systems using static analysis

via graalvm native image. In 2024 IEEE Interna-

tional Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 12–22. IEEE,

2024.

[6] Oracle Labs. Graal ir: An extensi-

ble declarative intermediate representa-

tion. https://citeseerx.ist.psu.edu/

document?repid=rep1&type=pdf&doi=

6688214dab5456c75c99f8171846242e09d4f5e3,

2023. Accessed: 2025-04-21.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://spec.graphql.org/October2021/
https://spec.graphql.org/October2021/
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/stomp-specification-1.2.html
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6688214dab5456c75c99f8171846242e09d4f5e3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6688214dab5456c75c99f8171846242e09d4f5e3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6688214dab5456c75c99f8171846242e09d4f5e3

	Introduction
	System Overview
	Results and Evaluation
	Conclusions
	References

