
http://excel.fit.vutbr.cz

Tool for rendering maps with traveled routes

Lukáš Kotoun

Abstract

The thesis deals with the creation of a tool that allows the user to render a high-quality and visually

appealing map with custom routes in a simple way. The rendering tool is implemented using Python. The

configuration interface of the tool is created using the SvelteKit framework. The basemap is rendered in

vector form using data from the OpenStreetMap project. The resulting tool provides the ability to set the

map area, the size of the resulting page for possible printing, and detailed customization of the appearance

of the map base along with the appearance of the traveled routes. The data for these routes is extracted

from uploaded GPX files. The resulting tool is easy to run thanks to containerization via Docker.

*xkotou08@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Most hikers, cyclists, runners and other athletes use

some sort of smart device to record their sporting per-

formance. They then often share these performances

with others and also view them themselves, especially

if they are challenging or record-breaking. One of

the most important indicators of such a performance

is its route. If an athlete wanted to exhibit their

challenging routes, they would most likely have to

get a detailed map of the area where they completed

these routes and then mark them manually on the

map. However, it may not be entirely easy to find a

map that suits the level of detail and size, and then

accurately draw the routes in question.

The aim of this work is to create a tool that would

allow the user to create a customized map for easy

printing by using simple but detailed settings. The

tool allows the selection of a map area, or a combi-

nation of several areas, setting the paper size with

the possibility of calculating it according to the se-

lected area, uploading custom routes in GPX format

and selecting map elements. It also offers detailed

options for customizing the appearance of both these

elements and routes. It also provides the ability to

prototype the map appearance by rendering a smaller

area on smaller paper with a scale corresponding to

the main area, for faster and easier customization of

the appearance.

The resulting solution is implemented as a web client

and server. The client, created using the SvelteKit

framework and Tailwind CSS library, serves as a config-

urator. The server, created using the Python FastAPI

framework, then performs the actual map generation.

2. Area and paper selection

When creating a custom map, the first thing user

is asked to do is select the area they would like to

display on the map. There are two input options to

choose from. The first option is by using the name of

the area, for example for a more complex area such

as the borders of the Czech Republic. The second

option is more for entering a simpler area, such as a

square area, directly using coordinates. For areas, it

is also possible to set the width of the borders, joining

the areas, which will result in removing the borders

where the areas touch. It is also possible to set the

area to fit the paper, which will fill in missing parts

so that the area perfectly copies the paper.

After the setting area there is a paper setting where

the user can select from standardized sizes or choose

a custom size. If only one dimension of custom size

is filled in, the second dimension will be automati-

cally calculated based on the dimensions of the se-

lected area and the specified limiting paper size. This

approach is particularly useful when using industrial

printers that print on a virtually infinite roll of paper

of a given width.

The configured area can then be easily viewed on the

created preview. Figure 2 shows an example of this

preview for 2 connected areas.

http://excel.fit.vutbr.cz
mailto:herout@vut.cz


3. Traveled routes upload and styling

After setting the area and paper, the user has the

option to upload their own recorded routes in GPX

format that they would like to display on the map.

The user can then categorize the uploaded routes

into their own groups and set the appearance of these

groups.

The appearance settings are very detailed. Routes

can be set to color, size, transparency, style, or po-

sition relative to the text for the basic appearance

and line borders. The settings also allow detailed cus-

tomization to mark the beginning and end of routes,

including the option to turn off marking. A sample of

the default appearance of GPX routes with the added

start and end marking can be seen in the Figure 3

image.

4. Map elements and design

After setting the previous elements, the map basemap

appearance is specified. The colors and detail appear-

ance are fixed based on the selected style. The user

can select 1 of 10 levels of detail to adjust this fixed

appearance or leave an automatic value calculated

based on the ratios of the selected paper and map

area.

The elements that will be displayed on the map can be

freely changed by the user, based on one of the zoom

levels and automatic determination of elements for

this level, or completely customized. For all elements

where this setting makes sense, the user can then

change the width and font of the element description

texts. Appearance and elements are set separately for

points, paths and areas. Figure 4 shows a sample

map with the Mapycz style, without texts and with a

GPX route.

5. Rendering

In the last step, the user simply chooses whether to

create the entire map or a quick preview on a smaller

paper, which uses ratio calculations to determine a

smaller map area to be rendered on the smaller paper

for easy and quick customization. This smaller area

will then be scaled to match the larger area, so when

you overlay the preview area on the corresponding

portion of the final area, the elements will overlap

perfectly. Any settings made can also be saved for

further editing at a later date.

The data from the OpenStreetMap project [1] is used

to create the map base, which is pre-filtered to ensure

that it does not contain any non-valid elements. All

the above mentioned settings are done in the user

interface created using the SvelteKit framework and

Tailwind CSS library. These settings are sent to the

Python server, where a parallel process is created to

process the request and perform the rendering.

This Python parallel process uses the osmium com-

mand line tool to select the specified region from

the data file or merge multiple files and create a new

osmium file with the required data. This file is then

loaded by pyosmium into a GeoDataFrame construct

from the GeoPandas library designed for working with

spatial data. The loaded data is first preprocessed

by, for example, filtering the elevation points using a

position and elevation-based algorithm to determine

their significance (based on Topographic Prominence

algorithm [2]), or a path-joining algorithm to avoid

rendering aretafacts. The preprocessed data are fur-

ther assigned styles and sorted for correct layering

before the actual plotting. Rendering based on the

assigned styles is then handled by the Matplotlib li-

brary, which is passed areas, paths, routes and as last

points in turn.

The resulting map is saved in PDF format and ready to

be sent back to the user. A sample map showing Brno

and its surroundings can be seen in the Figure 5 .

References

[1] Jonathan Bennett. OpenStreetMap: Be your own

cartographer. Packt Pub, 2010.

[2] Andrew Kirmse. Topographic prominence,

Jan 2017. https://www.andrewkirmse.com/

prominence.

https://www.andrewkirmse.com/prominence
https://www.andrewkirmse.com/prominence

	Introduction
	Area and paper selection
	Traveled routes upload and styling
	Map elements and design
	Rendering
	References

