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Abstract

Unconventional methods of personal biometrics are gaining popularity not only in academic circles but also

in the commercial sphere. This paper focuses on the human ear as an alternative biometric modality and

builds on top of the current trends in ear recognition. In this paper, we present a method for generating a

dataset for ear recognition, and we trained multiple deep-learning models on an existing ear recognition

dataset. Furthermore, we thoroughly evaluate and compare the models and training methods used and

current state-of-the-art research in ear recognition.
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1. Introduction

Ear recognition is a key area of research in the field of

biometrics. The benefits of ear recognition are that

the ear structure is unique to every human, taking a

sample of an ear is non-invasive and contactless, and

the ear changes only slightly with age, making it a

long-lasting biometric trait. [1]

Ear recognition can be applied to person verification

and identification tasks. In the identification scenario,

the ideal system would be able to correctly assign an

identity to the input image of an ear. In contrast,

in the verification scenario, the system, given two

images of an ear, is able to determine whether the

ears belong to the same person or a different person.

Furthermore, as noted in the [2], the system should

not present a demographic bias. In this paper, we

present a method for generating a synthetic dataset

for ear recognition, and we present the results and

setup of trained models on the UERC 2023 [2] dataset

and on the newly generated synthetic dataset and

provide a comparison with the current state-of-the-art

models. The main improvement over previous state-

of-the-art solutions is the usage of more aggressive

augmentations, multiple training steps, each with a

different loss function, and utilization of a newer vision

model, which resulted in better performance in EER

and GINI. Unfortunately, the synthetic dataset did

not improve the performance. Therefore, the training

was conducted with just the UERC 2023 dataset,

but it presents a possibility for future research in this

domain.

2. Commentary

2.1 Training setup architecture

All the experiments are based on a single training

setup architecture, as seen in Figure 1, where the

main difference between each setup is in the input

data, augmentations, vision transformer used (which

also impacts the embedding size), and loss function.

2.1.1 ArcFace

An ArcFace [3] loss function is used as a baseline

training method. This type of angular margin loss

minimizes the angular distance between embedding

vectors in the same class (person) while keeping a

margin from other classes. After training with this loss

function, the model is able to generate discriminative

embeddings for each class, which can be seen in Table

1 (denoted as ArcFace only).

2.1.2 Triplet loss

A triplet loss [4] is used as the second step after

training the model with ArcFace [3]. In order to

improve intra-gender and intra-ethnical performance,

the triplets are generated such that a negative ex-

ample is from the same gender and ethnical group

as the anchor and its corresponding positive example.

This training procedure slightly improved AUC and

F1F metrics. The model results can be seen in Table

1 (denoted as ArcFace + triplet).

2.1.3 Self-knowledge distillation

A self-knowledge distillation [5] is employed as a third

step to generate more robust embeddings. In this
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step, the teacher and student are the same model.

The teacher is fixed and receives the original image

as input, while the student receives an augmented

image as input. The objective is to minimize the

distance between the augmented and original image.

We experimented with several loss functions (distance

metrics); their respective results can be seen in Table

1 (denoted as self-learning).

2.1.4 Open Set Loss

In order to improve identification metrics (such as

F1F), an open set loss [6] is integrated into training

with ArcFace. This training method did not signifi-

cantly improve F1F, EER, or AUC when used with

a small batch size. On the other hand, when used

with a smaller model, which allowed for a larger batch

size, the improvements were significant. The training

experiments with this loss function are denoted in

Table 1 as osl.

2.2 Data preparation

As data preprocessing (eg. face alignment) is a com-

mon technique in face recognition and ear recognition,

we implemented a similar approach. First, we trained

a model to predict key points of the ear. Then, us-

ing the obtained key points, we rotated the ear and

stretched the bounding box to cover the same image

area. The process can be seen in Figure 2. This ap-

proach did not yield better results than using original

images, yet it presents a promising research direction.

The results are in Table 1, denoted as norm + cov.

2.3 Results

The evaluation of the models closely follows UERC

2023 [2] competition to assess the performance with

the current SOTA methods. The UERC 2023 com-

petition compares not only the raw verification and

identification performance but also the bias (and per-

formance) in different gender and ethnical groups.

2.3.1 Metrics

The main metrics evaluated in the UERC 2023 [2]

competition are EER (equivalent error rate), AUC

(area under ROC curve), F1F (False Non-Match Rate

at 1% False Match Rate – FNMR @ 1% FMR), R1%

(Rank-1 accuracy), GINI index computed over EER,

representing demographic bias and UERC Ranking,

which is a combination of all the metrics.

2.3.2 Results description

All results can be seen in Table 1. The best results

(in baseline models and in newly trained models) per

each metric (eg. AUC) are highlighted in bold. The

first eight results are taken directly from UERC 2023

[2] paper and are considered baseline. Newly trained

models that perform the best in any metric are marked

with a light red color and included compared to base-

line models.

2.3.3 Different demographic groups

The performance of the models in different demo-

graphic groups is presented in Figure 3, where it

can be observed that some models outperform other

models in some gender-ethnical groups. For exam-

ple, MEM-EAR outperforms all the other models in

Female - Black category, EVA02-Base (EER) out-

performs all other models in Male - White category

by a large margin. On the other hand, ViTEar and

EVA02-Tiny perform poorly in Male - Black category.

2.4 Variance in performance per model

The variance of performance of individual models can

be seen in Figure 4. While models such as UERC

Baseline, RecogEAR, and EVA02-Tiny present poor

performance overall, the performance of these models

across different ethnical and gender groups does not

vary as much as in better models, which results in a

good bias performance.

2.5 Size of the model vs EER and GINI

The size of a machine learning model greatly affects

its usability, mainly whether it can be used on embed-

ded devices. A GINI vs EER tradeoff plot is shown

in Figure 5. The most optimal solution lies in the

coordinates system’s origin. It can be seen that newly

trained models such as EVA02-Tiny, EVA02-Base,

and EVA02-BASE (EER) are pareto-optimal mod-

els, presenting very good EER performance while

maintaining good GINI performance. The size of the

individual dots represents a number of parameters of

the model.
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Jakub Špaňhel Ph.D., for his invaluable guidance,

patience, and support throughout the course of this

thesis. I am also thankful to Dr. Žiga Emeřsič and
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