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Abstract

LTR retrotransposons are often inserted into one another, which makes them hard to detect. This paper

shows that it is possible to use deterministic finite automata (DFA) to accelerate the computation. Several

tools can detect these transposable elements but vary widely in their runtime, sensitivity, specificity, and

capability of detecting nesting. We decided to modify TE-greedy nester [1] because it can locate even

highly nested retrotransposons. To localize a transposon, it is necessary to detect its structural domains.

We introduced a new method to generate DFA-based models representing these domains, which can be

used for efficient domain search.
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1. Introduction

The genetic information of most eukaryotic organisms

contains transposable elements (TEs) inserted into

the DNA sequence throughout evolution. LTR retro-

transposons constitute approximately 8.3% of the

human genome [2], as illustrated in Figure 1 . It is a

significant part of the genetic information, compared

to the 1.5% that is constituted by protein-coding

genes [3].

Some retrotransposons may be non-functional or have

neutral effects; others have been found to play a

crucial role in genome evolution and have regulatory

functions, such as controlling gene expression [4]. It

is, therefore, essential to localize them and determine

the order in which they were nested.

The main task is to create a program that, given a

nucleotide or amino acid sequence as input, can find

most of the TEs in a reasonable time. The main

complications are the frequent nesting of TEs and

mutations, which make it impossible to use exact

matching algorithms.

Existing tools capable of detecting LTR transposons

include, for example, LTR finder [5], which is relatively

fast but unable to identify nested TEs. Another tool

named RepeatMasker [6] first locates fragments of

structural elements that could be part of a transposon

and then tries to connect closely located fragments

to form a whole TE, thus being able to detect some

nesting. The tool we found the most interesting is

TE-greedy nester. It can detect even deep nesting,

but due to the recursive call of the algorithm on the

entire input sequence, it appears relatively slow.

Since we found experimentally that more than 80%

of the TE-greedy nester’s runtime is taken up by

calling a tool named BLASTX [7], we decided to use

an alternative algorithm based on deterministic finite

automata that could replace this slow part and thus

speed up the whole process. Replacing the BLASTX

tool with the DFA-based algorithm could significantly

speed up the TE-greedy nester and enable the search

for transposons even in longer sequences.

2. LTR retrotransposons

LTR retrotransposons are a type of TE that make up a

significant part of the genome of many species. They

consist of two long terminal repeats (LTRs), typically

250–600 bp in length, at both 5’ and 3’ ends of the

retrotransposon, as shown in Figure 2 . Between

these two LTRs is a coding region, approximately 5–7

kb long, that contains at least two genes, gag and

pol, but the number can vary depending on the type

of transposon. These genes encode proteins such as

protease (PR) and reverse transcriptase (RT), which

are necessary for the transposon to replicate and move

along the host DNA [8].
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2.1 LTR retrotransposon detection using TE-greedy

nester

TE-greedy nester [1] is a command-line tool that

can detect even deeply nested LTR retrotransposons.

Since older transposons are often fragmented by later

inserted transposons, as shown in Figure 3 , the pro-

gram first locates the newest TE, which is then cut

out of the original sequence, and the algorithm is

repeated until no other transposon is found. This

algorithm is described in Figure 4

3. Profile hidden Markov models

Profile hidden Markov models (PHMMs) are statis-

tical models widely used in bioinformatics. They

can precisely model the character of the searched

sequence because they also consider that some po-

sitions are more prone to mutations than others. A

PHMM structure is shown in Figure 5 .

Nevertheless, the main disadvantage of PHMMs is

that they are nondeterministic. Pattern matching

using a nondeterministic automaton is possible, but it

is computationally expensive due to the large number

of different runs that must be evaluated. Dynamic

programming algorithms, such as the Viterbi algo-

rithm [9], reduce the time complexity to O(LM2),

but compared to the deterministic alternatives, the

execution time is still relatively high.

4. Proposed homology search algorithm

The main idea of this work is that if a PHMM, repre-

senting the searched sequence, could be transformed

into a simplified DFA while minimizing the loss of ac-

curacy, it would be possible to search for homologue

sequences with time complexity of O(L).

4.1 Bounded counting automata

For the purposes of the presented algorithm, we intro-

duce a bounded counting automaton (BCA). BCA is

an extended version of the classical nondeterministic

finite automaton. It has a counter that is updated

when a transition is made. The counter is bounded,

so transitions that would cause the counter to exceed

the bound b are not allowed.

4.2 Conversion into bounded counting automata

Direct determinization of a PHMM is unfeasible as it

would result in an unacceptably large automaton. For-

tunately, there are several ways to significantly reduce

the size of the resulting automaton while maintaining

a reasonable accuracy. The first step is to convert the

transition and emission probabilities using a thresh-

old t into discrete values that indicate how much a

given transition deviates from the sequences in the

database. Next, we can take advantage of the regular

structure of the profile HMMs, which can easily be

divided into p smaller parts. Each part represents

a subsequence of the modelled domain and can be

determinized separately.

4.3 Homology search algorithm

Each of the created DFAs is used to efficiently search

for occurrences of the corresponding subsequence of

the domain. The DFAs must localize most of the

subsequence occurrences. Thus, they produce a lot

of false positive results. However, if we say that for

the result to be valid, we need to find at least m

closely located subsequences in the correct order, this

number is significantly reduced.

4.4 Results

The optimal settings of the four parameters p,t,b,

and m are crucial. The higher p,t, and b are, the

more distant the searched sequence can be. On the

other hand, the less rigid the criteria are, the more

false positive results we get and the more time it will

take to filter these results.

When evaluating the algorithm, it is necessary to fo-

cus on two main aspects: accuracy and execution

time. The algorithm speed highly depends on the

query sequence length. Figure 7 shows the execu-

tion times for different query sequences.

In order to test the sensitivity of the algorithm, ar-

tificial sequences with different degrees of identity

were generated. The comparison of the sensitivity of

different parameter settings and the sensitivity of the

BLASTP tool is shown in Figure 8 .

5. Conclusions

Even though the implementation of the algorithm is

only a prototype, the execution time measurement

showed that the proposed algorithm is around 10

times faster than the BLASTP tool. In addition, the

algorithm could be further accelerated if the query

sequence does not have to be processed p times. It

may be possible to continuously switch between the

DFAs depending on the current subsequence found.

Also, in future work, we would like to introduce some

result evaluation systems that could be used to filter

the results and reduce the number of false positives.
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