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Abstract

Machine learning (ML) models, particularly deep neural networks (DNNs), have achieved state-of-the-

art performance across complex tasks. Yet, their opaque “black-box” nature limits trustworthiness in

sensitive domains (e.g., healthcare, autonomous driving). This work systematically analyzes methods

of interpretability and explainability (XAI) of DNNs in computer vision, covering model-agnostic, model-

specific, gradient-based, and mechanistic approaches. Experiments on image classification datasets of

increasing complexity (MNIST → ImageNet) reveal the strengths and limitations of selected methods
under natural noise, invariance shifts, and adversarial attacks. The insights provide valuable guidance for

selecting XAI techniques, improving model transparency, and deepening understanding of complex models.
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1. Introduction

The impressive performance of DNNs has driven their

widespread adoption across diverse fields, including

healthcare, finance, and autonomous driving. How-

ever, their complexity poses significant challenges for

interpretability, accountability, and trustworthiness [1].

This work addresses limited transparency by system-

atically evaluating XAI methods, focusing on their

ability to clarify model predictions reliably.

Effective interpretability methods must provide stable,

comprehensible, and accurate explanations that facili-

tate trust in model decisions. Both qualitative (visual

clarity of explanations) and quantitative (fairness, ro-

bustness, complexity metrics) criteria are essential for

evaluating the quality of explanations.

Existing solutions to enhancing model interpretability

include intrinsically interpretable models (e.g, decision

trees), which offer a degree of transparency but might

struggle with complex, high-dimensional data [2], and

post-hoc methods (e.g, SHAP, Integrated Gradients),

which generate explanations after model training but

vary in stability and robustness [1].

This study compares these post-hoc interpretability

methods through structured experimentation, identi-

fying their practical strengths, limitations, and condi-

tions affecting their reliability.

2. Selected XAI Methods

Interpretability and explainability, though related, ad-

dress distinct aspects of understanding ML models.

Interpretability typically refers to understanding the

model’s internal workings, while explainability focuses

explicitly on justifying individual decisions [3].

SHAP, a model-agnostic technique grounded in coop-

erative game theory, offers theoretically sound attri-

butions but suffers from high computational cost [4].

Model-specific methods often exploit internal gradi-

ents: vanilla gradients (saliency) are simple but noisy;

Integrated Gradients improve attribution reliability via

path integration [5]

These methods were chosen for their diversity, adop-

tion, and complementary strengths, enabling robust

and meaningful comparative evaluation.

3. Experimental Methodology

The case study is set in the domain of computer vision,

focusing on image classification. Experiments were

designed to progressively assess XAI methods across

datasets of varying complexity: MNIST, CIFAR-10,

and ImageNet. The evaluation targeted three primary

dimensions: the relationship between model quality

and explanation clarity, robustness under realistic per-

turbations (natural noise), adversarial attacks (on

both models and explanations), and effectiveness of

ensemble and mechanistic interpretability approaches.
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3.1 Model Quality vs. Explanation Quality

Custom-trained CNN models with controlled general-

ization levels (underfit, properly trained, and overfit)

were evaluated on MNIST. Explanation methods were

qualitatively assessed via heatmap visualizations and

quantitatively analyzed using metrics from the Quan-

tus library [6]. The experiments confirmed a clear

correlation: explanations produced by well-trained

models were consistent and interpretable, whereas

explanations from underfit or overfit models often

appeared fragmented or misleading.

3.2 Robustness Evaluation of Explanations

Robustness was assessed using realistic perturbations:

Gaussian noise, invariance transformations, and ad-

versarial attacks. Integrated Gradients demonstrated

superior robustness to Gaussian noise and invariance

shifts, where vanilla gradients were sensitive. En-

semble approaches, aggregating multiple explanation

methods, provided significant robustness improve-

ments, suggesting their utility in adversarial contexts.

3.3 Mechanistic Interpretability and Ensembles

Mechanistic interpretability was explored as a comple-

mentary perspective, analyzing the internal represen-

tation structures (features, circuits) of CNNs. This

structural analysis supplemented the pixel-wise expla-

nations from post-hoc methods, offering deeper in-

sight into the decision-making process [7]. Ensemble

explanations further enhanced stability and mitigated

method-specific biases and vulnerabilities.

4. Discussion of Results

The experiments revealed essential insights into the

practical use of interpretability methods. Integrated

Gradients emerged as a reliable, broadly applicable

baseline method, balancing robustness, precision, and

interpretability. SHAP excelled in precision but ex-

hibited instability under perturbations, particularly

problematic in high-stakes scenarios. Ensemble ap-

proaches significantly boosted robustness, providing

practical strategies for reducing explanation volatility.

5. Conclusions

This work provides a systematic, experimental assess-

ment of interpretability methods in computer vision.

It clarifies dependencies between model quality and ex-

planation reliability, quantifies robustness issues, and

demonstrates practical approaches like ensembles and

mechanistic interpretability for enhancing explanatory

quality, helping to open up the “black-box” nature of

the models.

Future work should extend interpretability research to

underexplored domains such as transformer architec-

tures. To assess explanation quality in terms of human

trust and usability, user studies are essential. Further

directions include mapping internal representations

to semantic concepts via mechanistic approaches,

deepening the study of ensemble methods, and sys-

tematically evaluating explanation robustness across

diverse models and tasks.
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