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Interpretability and Explainability

Interpretability:  “How the model functions internally to make decisions?”

Explainability:     “Why the model produced a particular decision?”

Figure 1: Trade-off between interpretability and performance 
across ML families [2]: rule-based/linear models are highly 
transparent but less accurate; graphical, statistical, and 
ensemble methods balance both; deep learning maximizes 
performance  at the cost of interpretability; the “Ideal Model” 
remains theoretical.

Tradeoff: Model Performance vs. Interpretability

Figure 2: Overview of ML interpretability methods, categorized into 
intrinsic methods and post-hoc methods, which are further 
divided into model-agnostic and model-specific approaches.

Taxonomy of Existing XAI Methods
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Mechanistic Approach

Figure 5: (a) Progressive feature development across network layers. Layers detect edges and textures, while deeper layers capture 
object parts and higher-level concepts. (b) Circuit-based composition of a car detector. The visualization illustrates how a high-level 
car detector emerges from lower-level feature detectors through learned connections. The Windows, Car Body, and Wheels units 
contribute excitatory (red) and inhibitory (blue) signals, forming a neural circuit that integrates these components into a coherent car 
representation. Adapted from [1], CC BY 4.0

Mechanistic Interpretability for analyzing InceptionV1 image classification network (ImageNet). 
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Figure 3: Interpretability workflow for DNNs: mechanistic analysis via inner inspection and post-hoc XAI methods (saliency, integrated gradients, 
SHAP, Grad-CAM) with ability to evaluate via qualitative (visual clarity, user studies) and quantitative (fairness, robustness) metrics..

Experimental Methodology

The case study is set in the domain of computer vision, focusing on image classification. 

Experimental Analysis

Experiments were designed to progressively assess selected XAI methods across datasets 

of varying complexity: MNIST, CIFAR-10, and ImageNet.

Model Quality vs. Explanation Quality

Setting: 
  - Custom-trained CNN models with controlled generalization 
levels (underfit, properly-trained, overfit) were evaluated on MNIST dataset

Analysis:
  - Clear correlation: explanations produced by properly-trained model were 
consistent and useful, while explanations from underfit or overfit models 
often appeared fragmented or misleading
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Summary and Future Work

The experiments revealed valuable insights into the practical use of interpretability and explainability methods. 

The study provides a systematic experimental assessment of XAI methods in the field of computer vision (image 
classification). It clarifies dependencies between model quality and explanation clarity, quantifies robustness issues, 
and demonstrates practical approaches of ensembles or mechanistic interpretability for enhancing explanatory 
quality in order to help open up the black-box nature of the ML models.

Future work should extend interpretability research to other, underexplored domains such 
as transformer architectures. Further directions include mapping internal representations to 
semantic concepts via mechanistic approaches, deepening the study of ensemble methods, 
and systematically evaluating explanation robustness across diverse models and tasks.
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Figure 9: (a) Impact of natural noise on explanation quality across XAI methods. (b) Lower relative attribution change (𝛿) indicates greater stability.Figure 6: Qualitative assessment of selected XAI methods (ImageNet). 

The analysis targeted following dimensions:

(1)  Relationship between model quality and explanation clarity

(2) Robustness under realistic perturbations (natural noise, invariant transformations)

(3) Adversarial attacks (on both models and XAI explanations)

(4) Effectiveness of ensemble and mechanistic interpretability approaches

Figure 4: Comparing impact of model quality on explanation.

Figure 7: Quantitative assessment of methods based on [3].

Setting: 
  - Analysis of selected XAI methods on datasets of varying complexity (MNIST, CIFAR-10, ImageNet)

Analysis:

  - Qualitative and quantitative evaluation of the methods

(a) Feature complexity increases across layers. (b) Car detector emerges by composing lower-level features into a circuit.

Setting: 
  - Robustness was assessed using realistic perturbations

Analysis:

  - Gaussian Noise
  - Invariance Transformations Tests
  - Adversarial Attacks

Figure 8: Effect of invariant input transformations on explanation quality.  
Shows robustness of GuidedBP and sensitivity of Integrated Gradients (IG) 
and Gradient SHAP (GS) to baseline choice.

DeepInsight


