
http://excel.fit.vutbr.cz

RAG agent for intuitive work with SQL databases

Marek Tenora*

Abstract

People often struggle with efficiently querying databases. This project develops a retrieval-augmented

generation (RAG) system enabling natural language database queries with high accuracy, relevance, and

factual correctness. The solution employs a graph-based architecture using LangGraph with a single

advanced agent capable of both structured SQL querying and semantic vector search. Following a structured

two-phase (research and respond) workflow, the agent analyzes questions, retrieves relevant database

content, validates information, and provides comprehensive responses in Czech with proper citations.

Evaluation with a historical chronicle database demonstrates the system’s capability to handle complex

queries involving multiple-table joins while maintaining traceability and transparency. Differentiating between

validated (SQL-retrieved) and contextual (vector-searched) information enhances the trustworthiness of

responses. However, even strict instructions cannot fully eliminate occasional hallucinations by language

models.

The implemented approach provides a useful framework for historians and humanities scholars and could

serve as a model for developing natural language query systems across various complex database domains.

*xtenor02@stud.fit.vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Efficiently querying SQL databases remains a chal-

lenge for many users, especially those without SQL

expertise. Existing solutions like AskYourDatabase al-

low natural language queries, but often lack flexibility

or deep semantic understanding. NotebookLM en-

ables natural language interaction, but is not tailored

for databases.

This work presents a web application that enables

users to connect to any MySQL database, automati-

cally index its contents, and query it in natural lan-

guage (Czech). The backend uses FastAPI and Lang-

Graph to orchestrate an advanced agent capable of

both SQL and semantic vector search. The frontend

is built in Vue.js. Users simply provide a connection

string, and the system handles indexing and embed-

ding records for fast, context-aware retrieval.

Evaluation using a historical database shows that the

system reliably understands diverse database struc-

tures and handles complex queries, including multi-

table joins. This flexibility and accuracy distinguish it

from existing tools, making it suitable for historians,

researchers, and anyone needing intuitive access to

SQL data. Keep in mind that AI can make mistakes,

and all the responses should be validated using the

provided sources.

2. Implementation

Recent years have been remarkable for artificial in-

telligence, with new models consistently surpassing

previous ones almost weekly. This rapid evolution

has significantly impacted my project, leading me to

rewrite the entire system logic around five times.

2.1 Agent

I’ve found agent systems to be a large leap forward,

and I decided to use them. They allow the LLM to

use multiple tools, reason, evaluate its own responses,

and react based on them. The results of this project

were not that promising before implementing agents.

After weeks of testing multiple approaches, I’ve come

to use a single-agent workflow enhanced with another

LLM, forming the final answer for the user, so the

research agent can focus on the task.

Research agent can use multiple tools:

• SQLDatabaseToolKit - set of tools, enabling
querying, retrieving database and table struc-

http://excel.fit.vutbr.cz
mailto:xtenor02@stud.fit.vut.cz


ture information, and checking SQL query cor-

rectness before it’s executed.

• Vector database retriever tool - executes sim-
ilarity search on the vector database, which

helps the agent to find better context about

the database and where the wanted information

lies.

2.2 Prompting

Using effective prompts is essential. Refining the

prompts took significant time on this project.

The prompt for the research agent contains:

• Always include formatted output in the response
• Use a vector database for hinting, never rely
only on the results from it.

• Only results from the SQL database are vali-
dated and can be used for responding to the

user

• Provide internal notes for the response assistant

Prompt for response assistant contains:

• Answer always in Czech language
• Format the response in markdown
• Add citations
• Never respond with only unvalidated informa-
tion

2.3 Memory managment

Pasting the whole message history into the LLM isn’t

always the best and most efficient option. In my im-

plementation, Research Agent gets full conversation

history, and the respond assistant is using optimized

memory, where only the messages from the last user

question and the last Research Agent response are

included.

This way, the response assistant is not distracted by

all the previous messages, and the research agent can

utilize research conducted in the past.

2.4 Evaluation

The system was tested mainly on an incomplete his-

tory database, where it really set a challenge for

anyone to determine what’s going on in there. Pro-

viding an evaluation is important as it is proof that

the system is actually working. I used the framework

Langsmith, which provides a web application where

you can analyze your runs and see the results easily.

Metrics for evaluating my project are:

• Correctness -
• Correctness (with pedantic judge) - Uses py-
dantic agent instead of LLM to evaluate the

results.

• Relevance -

I made a dataset containing user questions and refer-

ence system answers based on the history database.

Acknowledgements

I would like to express my gratitude to my supervisor,

Ing. Onďrej Kĺıma, Ph.D., for his assistance with

the project. I appreciate his help in providing me

with the history database and for connecting me with

historians who offered valuable insights regarding the

project’s requirements.


	Introduction
	Implementation

