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Abstract

This project addresses the detection of texts generated by artificial intelligence (AI) with the use of various

machine learning models and large language models (LLM). It explores text analysis techniques, machine

learning methods, and modern transformer-based models, such as BERT or GPT and their ability to

generate text. The main goal is to create a reliable model/s for text classification, which are then used

within a web application and integrated into the test module of the company Lakmoos AI. The developed

solution is useful in plagiarism detection or text ownership attribution and helps the company to create

language models that produce answers as most humanly as possible
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1. Introduction

The rise of AI-generated text presents new challenges

in ensuring the authenticity of online content. Ma-

chine learning offers a powerful tool for detecting

AI-generated text by analyzing linguistic patterns and

inconsistencies that distinguish it from human writing.

By identifying and flagging AI-generated content, we

can maintain trust in digital communication and pre-

vent the spread of misinformation. Using machine

learning for this purpose helps protect the integrity

of information and ensures a more transparent and

reliable online space. Since the creation of the gener-

ative models, much research has been conducted in

order to provide a robust and objective tool for differ-

entiating between human-written and AI-generated

texts. These tools are relatively good but are often

monetized and do not provide enough explanation

of their classification decisions. As we will mention,

there are more than a dozen online AI detectors, of

which some are performing better than others. How-

ever, quantity does not often mean quality – these

tools are usually designed to perform the detection

on a specific type of text (such as short news articles

and social media statuses or, by contrast, on large

documents and online papers), mainly depending on

the size and quality of the training data.

2. Proposed solution

The general idea of creating a binary classifier is very

simple - the first step is to decide whether to use a

machine learning algorithm with a statistical approach

or do it the modern way - use LLMs to detect LLMs.

Either way, the steps needed to produce such tools

are similar to any classification task using supervised

learning – dataset selection and/or creation of a new

dataset, model selection by experiments and more

thorough testing of selected models.

To visualise all the steps mentioned above, we can

create a pipeline, which shows the difference between

feature-based and feature-less approaches:
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Figure 1. Visualization of the pipeline to create an

AI-generated text detector using machine learning.

The train and valid subsets are used during the

cross-validation training period, and later, the test

subset is used to rank the model’s ability to classify

unseen data. To find the best model, the F1 score

and the accuracy metric can be utilised to determine

the model’s suitability for future application.
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The final product of this thesis should be an easy tool

for detecting the authorship of a given text. Since

this work is being done in collaboration with Lakmoos

AI, it also needs to be included in their codebase as

well. Therefore, the final product will consist of a

standalone application that can be deployed online

and a module supporting the tests and the main

functionality of the company tool.

3. Experiments

One of the first step done before experimenting with

machine learning models was extracting more features,

which will be used by the feature-based models we

will pick. The selected numerical and literal attributes

were:

1. Embeddings – words as vectors,

2. n-grams – digrams and trigrams,

3. Perplexity [1, 2] – uncertainty of a language

model when predicting the next word.

4. Burstiness [2] – word appearance,

5. Entropy – randomness or unpredictability in a

text,

6. Stop words count – frequently used words that

usually carry little unique meaning,

7. Sentence count,

8. Syllable count,

9. Unique word count and Unique word ratio,

10. Average word length, Character count.

These features were integrated into a training dataset,

which was used to train multiple machine learning

models with the help of a python library Pycaret –

this library serves as a wrapper above various mod-

els, simplifying the training and testing process as

well as offering an easy comparison of accuracies and

precisions of them. After defining the classification

experiment, the testing yielded the best results for

Extreme gradient boosting model (XGBC), which

achieved 70% accuracy and F1-score. This model

was therefore selected as the go-to feature-based ap-

proach for our task, and after further hyperparameter

optimisation, we were able to increase the accuracy

to 80%.

label precision recall f1-score support
AI 0.78 0.79 0.79 1530

Human 0.81 0.79 0.80 1670

Table 1. Classification report from the XGBC model

trained with optimal parameters. We can observe a

slightly higher accuracy within the human class.

Since we have also converted the dataset into em-

beddings, a neural network was another suitable clas-

sification method we tested. However, even with

regularisation and dropout layers, the network suf-

fered from overtraining and was unable to generalise

accurately and was only able to achieve 55% accuracy

– the reason this could happen might lie within the

nature of the training texts, where words converted

into embeddings do not carry the information about

relationships and meaning within the sentence.

This problem was solved by using a transformer-based

model, such as distilbert-base-uncased1, which was

trained on the same dataset.

The training process went like this:

Epoch Validation Loss Accuracy Precision Recall F1
1 0.593683 0.691542 0.756344 0.691542 0.632225
2 0.498089 0.774876 0.812813 0.774876 0.752618
3 0.588391 0.772388 0.803072 0.772388 0.751733
4 0.440752 0.832090 0.844615 0.832090 0.824615

Table 2. Progress of the distilbert model during four

epochs of training.

This shows great potential in using this type of model

for text classification.

4. Web application

After experimenting with different machine learning

models, the best-performing ones (XGBC and BERT)

were selected and a web application was created. It

consists of a backend part, written in python with

the FastAPI library, and a frontend part, written

in java script with the ReactJS library. The back-

end also uses a variety of other libraries, such as

xgboost, transformers, torch, shap, textstat, pandas

and sklearn.feature extraction.text.

To make the classification output more user-friendly,

the class probabilities are displayed in an interactive

pie chart and the user can request a decision expla-

nation. For this, a SHAP explainer library was used.

It is a game-theoretic approach to explain the output

of any machine learning model. It connects optimal

credit allocation with local explanations using the

classic Shapley values from game theory and their re-

lated extensions 2. SHAP offers per-token influence

visualisation for the feature-less model and feature

importance bar plot for the feature-based model. To

get the best of both worlds, a combined classification

can be utilised as well, passing the input through both

models and computing a weighted average of class

probability outputs.

The application is currently being deployed at

ai-detector.lakmoos.com .

1https://huggingface.co/distilbert
2Cited from https://shap.readthedocs.io/en/latest/
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Figure 2. A screenshot taken from the app running

locally showcasing the simplicity of the interface and

its layout.

5. Conclusions

The project and the master’s thesis provide a closer

look at how generative models produce text and how

they can be successfully and accurately detected with

machine learning. It considers various studies done on

this topic, gathering insights and inspiration for such

classifier and tries to utilize this knowledge to create a

detector, that can be used as a standalone application,

as well as serve as a additional human-likeness scoring

method for responses of a large language model used

in the Lakmoos AI company. For this purpose, one

feature-based and one feature-less model was chosen,

comparing the two approaches as well as combining

them to achieve more informed decisions. The result

is in a form of a web application, that is publically

available and offers interactive user interface with

additional classification explanations and which can

be accessed with an API call, further expanding its

usability not only within the company, but also to the

broader world.
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