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Abstract

Accurate, low-latency endpointing is an important part of spoken dialogue systems. Traditionally, endpointers

rely on spectrum-based features to represent audio. Building upon recent works with neural audio codecs,

we propose real-time speech endpointing for multi-turn spoken dialogue, using streaming low-bit rate neural

audio codec features. Further, to reduce the cutoff error rate, we introduce label delay training. This

technique achieves a 31% relative reduction for spectrum-based and 12% for codec-based endpointing at

200 ms median latency. Moreover, with label delay training, codec-based endpointing demonstrates a 32%

relative reduction in cutoff error rate. Finally, we demonstrate efficient integration with a codec-based

speech large language model, improving response time by 900 ms median latency and cutoff error by 30%.
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1. Introduction

Advancements in spoken dialogue systems [1] are

leading to widespread adoption of speech technologies.

Consequently, speech is a primary way users interact

with applications ranging from voice assistants [2] and

speech Large Language Models (LLM) [3] to systems

like customer support, emergency services. For such

applications, it is beneficial to know when a user has

stopped speaking so that further processing can begin.

This process is referred to as speech endpointing.

Developing an effective endpointer requires balancing

latency and accuracy. Errors can cause incomplete

data and hurt the user experience, while accurate,

low-latency endpoints greatly improve satisfaction.

We propose to use neural audio codecs (NAC) [4]

as speech feature representation for the endpointing

task. Neural audio codecs, originally developed for

audio compression, provide discrete audio representa-

tions. Compared to traditional speech features such

as Mel-Spectrograms, neural audio codecs can rep-

resent audio at low bit-rates [5] while maintaining

high reconstruction quality. Unlike non-streaming,

higher bit-rate self-supervised learning (SSL) features,

streaming NACs [5, 4] are uniquely suited for real-

time applications. Furthermore, utilising neural codec-

based endpointer offers multi-task capability, enabling

integration of codec-based endpointer with codec-

based ASRs and codec-based speech LLMs.

While using NAC for endpointing has benefits, using it

can lead to a sub-optimal performance [6] mainly due

to the presence of short pauses and filler words. Uti-

lization of speech features only may prove insufficient

to prevent the premature triggering of the endpointer

due to silences in the middle of a turn. Several ap-

proaches have been explored to enhance endpointer

accuracy, including the use of ASR features [6], multi-

task training with ASR [7, 8]. Further, many works

have used additional pause labels [9].

We propose label delay training, a novel approach

to reduce errors in standalone speech endpointers

without additional features or pause labels. Recent

multi-stream speech language models have used de-

layed tokens [10, 4] to reduce dependencies between

parallel output streams. In contrast, we apply label

delay to a single output stream, specifically to op-

timize the latency-accuracy trade-off and enhance

endpointer performance. By shifting target labels,

we encourage delayed, high-confidence predictions,

which leads to inherently fewer errors.

The contributions of our work are as follows -

• Using streaming neural codec features for end-
pointing in multi-turn spoken dialogue.

• Label delay training for improved endpointing.
• Integrating codec-based endpointer with codec-
based speech LLM to achieve low response la-

tency and cutoff error.
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2. Proposed methodology

2.1 Baseline endpointer

For streaming endpointing, we use a unidirectional

Long Short-Term Memory (LSTM). The LSTM end-

pointer, operating at the input frame rate, predicts

probabilities for four labels per frame - <user>,

<system>, <user-end>, <system-end>. End-

point triggering is based on a threshold applied to the

turn-end probability.

2.2 Neural audio codecs

We propose using features from NACs [5]. We extract

code vectors by indexing the NAC codebook with the

encoded codes and use these pre-trained code vectors

as the input features for the LSTM endpointer.

2.3 Label delay

To encourage the endpointer to delay predictions, we

introduce a delay to the labels during training. This

induces an implicit latency learned from the training

objective, without requiring explicit latency during in-

ference. Given the label sequence Y = (y1,y2, . . . ,yT )

with T frames, we generate the label sequence with

delay τ , Yø as shown in Poster figure 3.

3. Experimental setup

3.1 Dataset

We train and evaluate our model using the the Spo-

kenWoZ corpus [11]. The dataset consists of many

multi-turn spoken dialogues between two speakers.

3.2 Training

All models are trained using PyTorch. and the Mimi

NACs are used from transformers1 library. All models

were trained for 50 epochs using frame-level cross-

entropy loss with Adam optimizer.

3.3 Evaluation

We use three evaluation metrics commonly used in

endpointing [12]. We use ep50 and ep90 to measure

latency, which corresponds to the time difference

between the endpoint timestamp and the true turn-

end timestamp. ep50 corresponds to the median

latency, and ep90 represents the worst case - the tail

latency at the 90th percentile over all <user> turns.

The cutoff error rate is captured by ep-cutoff - the

proportion of <user> turns where the endpointer is

triggered before the true turn-end.

1https://github.com/huggingface/transformers

3.4 Neural codec endpointer with speech LLM

We integrate Mimi-based endpointer with an open-

sourced speech LLM, Moshi [4], which uses the Mimi

NAC. We simulate interaction with the LLM using

SpokenWoz test sentences and measure Moshi la-

tency and cutoff rate.

4. Results and discussions

4.1 Neural audio codec performance

Poster figure 5 shows the metrics using baseline ver-

sus proposed NACs as input. Mimi NAC achieves

lower cutoff rates across both median and worst-case

latencies, outperforming the baseline. This is likely

due to the larger size of Mimi NAC, and the semantic

context distillation in the Mimi pre-training [4].

4.2 Label delay

Label delay training achieves substantial error reduc-

tion at fixed latency of 200 ms, with relative gains

of 31% and 12% for Mel-Spectrogram and Mimi

NAC features, respectively (Poster figure 6). Further,

Mimi-based endpointer consistently outperforms the

baseline with label delay training. At 200 ms median

latency, Mimi reduces the cutoff rate to 5.28% com-

pared to baseline’s 7.76% – a significant 32% relative

error reduction – while incurring an 80 ms worst-case

latency increase. Meanwhile, if we consider fixed

worst-case latency of 800 ms, we observe that Mimi

based endpointer achieves obtains a lower error rate

of 5.28%, when compared to 6.05% from baseline,

along with 80 ms reduction in median latency.

4.3 Error analysis

We analyze the locations where the endpointer cut

off the user’s speech and consider the mid-silence

duration at these points. The results (Poster figure

8), show that label delay training effectively teaches

the endpointer to avoid triggering short pauses.

4.4 Using endpointer with Moshi speech LLM

Poster figure 7 shows the response latency and cutoff

rate when interacting with the Moshi speech LLM

as explained. Integrating the Mimi-based endpointer

with Moshi significantly improves the latency and

cutoff rate metrics across different inference config-

urations. Using an endpointer makes it possible to

explicitly control the response timing.

Acknowledgements

I would like to thank my supervisor Petr Schwarz,

along with Shinji Watanabe and Jan Černocký for
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