
http://excel.fit.vutbr.cz

Visualization of lidar, camera, and vector data from

a railway mobile mapping system

Zuzana Mǐskaňová*

Abstract

The aim of this paper is to present a web application focused on visualizing data from a mobile mapping

system. The application aims to visualize data in a practical, clear and customizable way. The application

is written in Python using framework Dash. For a smoothly running animation of the movement of the

train even with a large point cloud, the rendering of the final image is done on the client’s side. For the

visualization itself, framework deck.gl is used. At present, the application offers sufficient functionality and

performance. Hovewer, there is still room for further improvement, mainly in customizability. This new web

application has a potential to be exploited within the field of mobile mapping system data visualizations.

The knowledge acquired throughout the work could also useful to other developers creating visualization

systems.

*xmiska03@stud.fit.vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

When working with large datasets, transparent and

handy visualization systems play a key role in the pro-

cess. The application described in this paper tries to

satisfy the demand for a specialized visualization sys-

tem targeted on data from a railway mobile mapping

system.

The main challenge of the work was to find an effec-

tive way of rendering animations of large point clouds

in a web application, because point clouds, along with

frames from the camera, constitute the largest part

of the visualized data. The created application, on

top of good functionality, also needs to be intuitive

and user-friendly to be useful.

Examples of existing solutions for mobile mapping

systems data visualizations include program Cloud-

Compare and the Autonomous Visualization System

(AVS). However, CloudCompare cannot visualize the

point cloud from the point of view of the train opera-

tor and cannot display camera data simultaneously

and AVS is a framework for developing advanced

systems, not a ready-made application [1].

The application developed in this work satisfies spe-

cific demands, and therefore is unique. It allows the

user to upload various data files. The data is then

displayed from the point of view of the train operator

and the animation of the movement of the train can

be played.

2. The visualized data

The application can display multiple kinds of data:

• point cloud data, divided or united – Figure 2 ,

• video from the camera – Figure 3 ,

• predicted positions of the train profile – Figure 4 ,
• other vector data.

In order to display the point cloud and vector data

from the perspective of the train driver, the data

must include camera positions, with each position

composed of a translation, a rotation and a times-

tamp. For the point cloud to fit the video, all of the

camera parameters need to be taken into cosidera-

tion. This includes the camera matrix and distortion

coefficients – Figure 5 .

All of this data is put together and used to create

the final layered picture – Figure 1 .

3. Camera movement

In the dataset provided for this work, the point cloud

did not fit the video well when it was displayed using

http://excel.fit.vutbr.cz
mailto:xmiska03@stud.fit.vut.cz


only the provided camera positions and parameters. It

was necessary to add a certain offset to each camera

position – one more translation T2 to the provided

translation T1 and rotation R. This situation is illus-

trated in Figure 6 , reduced to 2D space for simplifi-

cation.

Translation T2 is relative to rotation R. For example,

on the illustration it is always “to the right”.

This creates a small mathematical problem, because

in deck.gl, the camera position is set by using one

translation and one rotation, TV and RV . Therefore,

we need to find TV and RV such that

T1RT2 = TV RV .

The solution is quite simple, it suffices to compute

T2RT1 and then “divide” the matrix into TV and RV .

4. Deck.gl layers

In deck.gl, the visualization is composed of layers.

There are many kinds of layers, two of which are useful

for this work - PointCloudLayer and PathLayer [2].

The application typically displays 10 point cloud layers

and 3 path layers, which is shown in Figure 7 .

The displayed point cloud data consists of small

chunks of data, which were scanned step by step

as the train moved forward. The application displays

one current and nine previous chunks.

That means that the layers data needs to be changed

whenever the position of the train changes. When

the animation is running, at most one layer’s data

needs to be changed in one step – the oldest chunk

needs to be replaced by a new one. This is done in an

effective circular way, which is shown in Figure 8 .

The application also includes a possibility to display

only one (unchanging) point cloud layer.

5. Implementation

For the user’s convenience, the described system

has been implemented as a web application. The

whole structure of the implementation is illustrated

in Figure 9 . The application is written in Python

using framework Dash and library Dash Bootstrap

Components for styling.

5.1 Visualization rendering

To avoid delays caused by communication between

the client and the server, the rendering of the visuali-

zation itself takes place on the client’s side, using

framework deck.gl. This framework uses WebGL for

acceleration and can visualize large datasets effec-

tively [2]. Although it would be possible to render

and control the visualization in this way using only

Python code running on the server, the result would

not be desirable because of a very poor performance.

So instead, the visualization is controlled directly by

JavaScript functions put in a module which is attached

to the application. Clientside callbacks defined in

Dash then call the functions in the module. This

optimization allows the application to really use the

full potential of deck.gl.

5.2 Animation of train movement

The animation begins by playing the video, which is

inserted as an ordinary HTML video element. The

synchronization between the video and the deck.gl

visualization is provided by registering a JavaScript

callback, which runs when a new video frame is sent

to the compositor. The callback updates the visuali-

zation according to timestamps data.

5.3 The project file

As it was described above, the data that needs to

be visualized is composed of many files, sometimes

hundreds, in various formats, which means that it

would be inconvenient for the users to upload them

manually. This problem was solved by accepting a

project file which specifies paths to all data files,

under the assumption that the user has access to the

server that the application server is running on. This

assumption can be made, because the application is

intended for specific users, not for the general public.

6. Conclusions

The aim of this work was to create a practical visuali-

zation system. The application was made and is, with

the exception of the distortion calculation, quite well-

performing, rendering an animation which includes a

million and a half points at 46-52 FPS.

However, there are many features that could be added

to make the visualization even more customizable and

the application even more user-friendly, for example

point cloud filtering and more interactivity.

Acknowledgements

I would like to thank my supervisor Ing. Onďrej Kĺıma,

Ph.D. for his help and useful advice.

References

[1] Uber ATG. Autonomous visualization system.

online. https://avs.auto/.

https://avs.auto/


[2] OpenJS Foundation. Deck.gl. online, 2025.

https://deck.gl/.

https://deck.gl/

	Introduction
	The visualized data
	Camera movement
	Deck.gl layers
	Implementation
	Conclusions
	References

