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Abstract

Speech enhancement aims to remove background noise from speech signals while preserving speech quality

and intelligibility. In this work, we propose a novel dual-branch model based on neural audio codec that

separates clean speech and noise into two separate streams. In order to allow unsupervised training, we

combine the branches and force the output to resemble the input noisy speech. Our experiments show that

supervised models outperform strong baselines in SI-SDR and achieve competitive perceptual scores, while

our unsupervised model significantly improve noisy inputs without requiring paired data. These results

demonstrate the potential of our approach for both supervised and unsupervised speech enhancement,

contributing towards more generalizable and robust systems.
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1. Introduction

Speech Enhancement (SE) aims to remove back-

ground noise from speech while preserving the under-

lying clean signal. Historically, SE methods were based

on classical signal processing techniques. Over the

past decade, however, deep learning-based end-to-end

(E2E) models have become the dominant approach.

Training E2E SE models with real-world data is chal-

lenging due to the absence of clean-noisy speech

pairs. Consequently, models are typically trained on

simulated mixtures created by adding noise to clean

speech [1, 2]. Although effective, these mixtures

poorly reflect real-world complexities, limiting model

generalization.

To address this, unsupervised SE methods [3, 4, 5]

have been proposed, aiming to enhance speech with-

out requiring clean references. These methods as-

sume uncorrelated noise and speech or attempt to

model clean speech distributions directly. However,

maintaining consistency between the noisy input and

the enhanced output (i.e. preserving uttered content,

speaker identity, prosody, to name a few) remains a

significant challenge.

In this work, we propose a novel dual-branch archi-

tecture based on neural audio codecs (NACs), which

separates clean speech and noise into two distinct

audio streams. By reconstructing the original noisy

input from the sum of the two outputs, we ensure

consistency and enable unsupervised training by uti-

lizing clean speech and noise discriminators to guide

the two branches.

2. Proposed Method

The key idea behind our approach is as follows: If we

have a model with two separate audio output streams

and we encourage one to resemble clean speech, then

summing the two outputs and forcing the result to

closely match the original noisy input should enforce

consistency between the noisy input and the enhanced

speech.

Let x ∈RT be the input noisy speech signal of length
T . As depicted in Figure 3 , we define a convolu-

tional encoder E : RT → RN×d and a decoder D :
RN×d → RT , where N is the number of frames, in-
spired by the Descript Audio Codec (DAC) [6]. These

networks map raw waveforms into high-dimensional

latent representations and reconstruct them back.

Passing x through E yields a latent sequence z =

E(x) ∈ RN×d , which captures local structure. To
allow the model to capture longer-term dependencies

like prosody and speaker characteristics, as well as

structured noise patterns (e.g., sirens, engines), we

use two separate transformers with rotary positional

embeddings (roformer) [7]: RCS and RN .

These transformers produce two separate latent se-

quences, zCS =RCS(z) and zN =RN(z). Each latent
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stream is then quantized using residual vector quanti-

zation (RVQ), producing quantized representations

ẑCS and ẑN . The quantization allows us to control the

information bandwidth of each branch and reduces

information leakage between them.

Both branches are then decoded separately to produce

waveform outputs x̂CS = D(ẑCS) and x̂N = D(ẑN),

corresponding to the estimated clean speech and

noise, respectively.

To account for possible amplitude mismatches, we

compute optimal scalars α and β by solving:

α∗,β∗ = argmin
α,β
∥x −αx̂CS−βx̂N∥22. (1)

The reconstructed noisy input is then obtained as:

x̂= αx̂CS+βx̂N . (2)

To optimize the model, we treat the system as 3

separate generative adversarial networks (GANs) [8];

hence, employing 3 discriminators: DCS,DN ,DNS for

clean speech, noise, and noisy speech respectively.

The architecture of each discriminator is derived from

NACs—i.e., an ensemble of 8 discriminators oper-

ating on a complex Short Time Fourier Transform

(STFT) spectrogram with different window sizes and

hop lengths, originally employed in NACs to increase

the fidelity of the reconstructed audio. The discrimi-

nator is trained against generator (in our case a model

producing audio) to produce a score close to 1 if the

discriminator input is a real sample, or close to 0 if it

is produced by the generator (i.e. fake). It has been

proved by [8] that after convergence, the generator

will become a sampler from the real data distribution.

These discriminators ensure that each branch learns

the correct distribution: clean speech for DCS, noise

for DN , and high-quality reconstruction for DNS.

Finally, to stabilize training and further enhance qual-

ity, we add a reconstruction loss combining SI-SDR

and mel-spectrogram distance:

Lr = SI-SDR(x, x̂)+∥logmel(x)− logmel(x̂)∥1 . (3)

3. Experiment Setup

We trained our models on a dataset combining speech,

noise, and room impulse responses (RIRs), following

the URGENT challenge setup [9]. The training corpus

includes 2500 hours of speech, 500 hours of various

noise types, and more than 60,000 RIRs. All audio

data is resampled to 16kHz.

We train the models in 3 steps: pre-train E, RCS,

D, and DCS to perform SE using simulated mixtures

using Lr between the ground-truth and the estimated
clean speech, step 2: introduce RN ,DN , and train the

entire 2-branch model to perform SE and noisy speech

reconstruction, step 3: transition to fully unsupervised

training by removing clean-speech Lr , relying only on
adversarial objectives and reconstruction consistency.

We validate the models on a test subset of a well-

established noisy speech dataset VCTK-Demand [10],

using both, signal-based metric SI-SDR [11], and

perceptual metrics PESQ [12], STOI [13], DNS-

MOS [14], and UTMOS [15].

4. Experiments

Table 1 shows the comparison of strong baselines

MetricGan+ [16], HiFi-GAN-2 [17], and FINALLY [2]

with our models. It can be seen that our supervised

models perform the best in SI-SDR, and achieve the

second best STOI scores. Furthermore, our models

are competitive in the other 3 perceptual metrics,

namely DNS-MOS and UTMOS, achieving the second

best results.

Although the 2-branch unsupervised model lacks be-

hind the supervised models, it still outperforms the

noisy input lowerbounds. The decrease of perfor-

mance is attributed to the slight leakage of noise

to the clean speech branch, as the clean-speech dis-

criminator DCS does not enforce fine-grained details

preservation strongly, allowing the noisy speech re-

construction gradients to overrule gradients coming

from DCS. However, without DCS, the clean speech

branch leaks the entire noise, proving its necessity.

Additionally, the noise branch accurately models resid-

ual noise, validated by strong noisy input reconstruc-

tion scores showed in Table 2 , and a sample depicted

in Figure 4 . We observed that the noise discrimina-

tor DN plays crucial role in preventing clean speech

leakage into the noise branch, which in turn results

in better quality of clean speech.

5. Conclusion

In this work, we introduced a novel dual-branch neural

audio codec-based model for speech enhancement.

By reconstructing the input noisy speech, our method

enforces consistency and enables both, supervised and

unsupervised training.

Our supervised models outperform strong baselines in

SI-SDR and achieve competitive scores across several

perceptual metrics. Although the unsupervised variant

performs slightly worse, it still demonstrates a clear

enhancement over the noisy inputs, validating the

approach.
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