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Abstract

The aim of the project is to accelerate the acoustic field propagator using graphic card. Acoustic field

propagator is one step solver, that simulates how acoustic waves (sound) travels through medium. Original

propagator is implemented using Matlab, that supports GPU acceleration of matrix math using gpuArray.

To use the full potential of GPU computational power we can rewrite it in C++ and CUDA. With the use

of precomputed values stored in constant memory of the GPU, and reduction of needed memory transfer,

the speed up in some cases reach 90 times of the original matlab version. Even with the gpu accelerated

Matlab version, CUDA is still 5 times faster and can handle 8 times bigger acoustic field grid. Thanks to

speed up, researchers can simulate the behaviour of transmitter quicker, with the number of simulation in

the thousands.
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1. Introduction

Ultrasound is an important tool in medical science.

Today, the usage of ultrasound is spreading to the

space of therapy. Transcranial ultrasound therapy is

one method, where ultrasound is focused to either

stimulate parts of the brain to treat conditions like

depression or Parkinson’s, or destroy tiny areas of

damaged or malfunctioning brain tissue (like treating

tremors or tumors). To prevent unintentional damage

to healthy parts of the brain, we can simulate the

wave propagation.

Acoustic field propagator (AFP) is a one-step wave

propagation solver [1]. Compared to classic simula-

tion, where we simulate the propagation with small

time steps to the desired time, with AFP the solution

is computed in one step using Green’s function.

Originally the propagator is written using Matlab.

The focus of this project was to accelerate the solver

using GPUs. The first step was to rewrite the solution

using C++. This was done to ensure correctness and

for easier debugging. Simultaneously, in this step

the parts of the propagator that can be precomputed

were separated. The tested version written in C++

was then converted to a CUDA kernel.

Before launching the kernel, the constant parts of

the propagator are precomputed on the CPU. These

values are moved to GPU constant memory along

with other variables. To allow starting bigger simula-

tions, the propagator can be started in three versions:

quick, balanced, and low memory, each with decreas-

ing memory requirements. For speed up of execution

of a large amount of small kernels, I used CUDA

Graph. This way the startup of kernels is quicker and

some operations can be executed in parallel.

Resulting in 800% acceleration compared to gpuArray

Matlab version and up to 6000%. Additionally, by

converting from garbage collection memory manage-

ment in Matlab to manual, the peak memory usage

is two times smaller. Exact speed-up of my solution

compared to the original Matlab version and version

using gpuArray is shown in Chart 1 .

2. Acoustic field propagator

As mentioned before, AFP is a one-step wave propa-

gation solver. That means we can solve the acoustic

grid state at any time instantaneously. The equation

Figure 2 describes the propagator function.[2] The

F and F−1 represent forward and inverse Fourier
transforms. A(x)e iφ(x) represents a single-frequency

ultrasound source.And finally, the I(k,t) represents

the core equation of the acoustic field propagator

broken down in Figure 3 .
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3. Converting AFP to CUDA

The implementation consisted of three similar ver-

sions of the AFP. One using wrapping cancellation,

second that supports nonlinear acoustics, and the

final one with support for heterogeneous sound speed

and absorption medium.

First step was to analyze the original implementations

in MATLAB. I profiled the code to identify where

the algorithm spends the most time. Based on this

analysis, I focused on the core of the propagator, the

equation shown in Figure 3 .

Before converting code to CUDA, I decided to write

the AFP for CPU in C++ first. This way, the process

of rewriting the AFP is easier to verify and test for

correctness. Start the rewrite process with conversion

from matrix notation to loop notation. With this

completed and compared to the original, next step

was to identify the constant and repeating parts of the

AFP equation. Separated parts that are the same for

every point of the acoustic grid will be precomputed,

and dependent parts can be computed only once per

point.

To make the CUDA version quicker on GPUs that

have slower double precision computing performance,

the kernel and parameter classes are templated with a

precision parameter, so the user can run all operations

in single or double precision.

Process of converting this C++ CPU version to

CUDA code was simple. Precomputed parts of AFP

and needed parameters are copied to device constant

memory, for quicker access and reduction of register

usage. For fast Fourier transform I used CUDA li-

brary cuFFT that is highly optimized for execution

on GPU. To reduce memory transfer, wave numbers

are computed in the same kernel as AFP, whereas

in the original version they are precomputed to ma-

trix. When the memory transfer is necessary the host

memory is allocated with cudaHostMalloc function

so the memory is pinned and is not pageable.

I decided to allow users to select from three versions,

quick, balanced, and low memory, that each differ

in device memory requirements. For this AFP ver-

sion, the exact memory requirements are shown in

Chart 2 . The theoretical requirement for the quick

version can be defined by this equation:

M = numberOf Points ∗poitSize ∗3 (1)

Balanced version only requires 2/3 and low memory

1/3 of the quick version.

3.1 Non-linear version

With this version, we can simulate the non-linearity

of the source of acoustic waves. The AFP core of

this version is very similar to the first, so the class

for the kernel is inherited. But the number of kernels

and memory transfers drastically increases. For this

reason, I decided to use CUDA Graph to combat

this reality. CUDA Graph helps with the reduction of

kernel execution speed and parallel execution of mem-

ory and computational tasks. Compared to the wrap

cancelling version, the device memory requirement is

dependent on the number of harmonic frequencies we

are solving for. The theoretical requirement for the

quick version:

M = numberOf Points ∗poitSize∗
(numberOf Harmonics+3) (2)

3.2 Heterogenous version

Last version is capable of simulating acoustic media

with heterogeneous sound speed and absorption. Sim-

ilarly to the previous nonlinear version, there is a need

for a high number of iterations, so CUDA Graph is

used. Quick mode solves the propagator equation

only once and saves the result for multiplication in

each iteration. On the other side is low memory mode

that computes the propagator in each iteration to

save memory usage. Device memory requirement

looks as follows:

M = numberOf Points ∗poitSize ∗5 (3)

M = numberOf Points ∗poitSize ∗3 (4)

M = numberOf Points ∗poitSize ∗2 (5)

3 Quick, 4 Balanced, 5 Low memory version.

4. Result of implementation

Program was tested on my machine with the following

specs:

• CPU - Intel Core i7 13700k
• RAM - DDR5 64GB 5600MHZ
• GPU - Nvidia RTX 3080 Ti 12GB

Detailed results are shown in Chart 1 and Chart 2 .

Wave warping cancellation version speed-up compared

to the original version is approximately 60x to 90x.

Comparing my quick mode with MATLAB gpuArray

version, my implementation is approximately 8 times

quicker, while using 1/6 of the device memory.

My nonlinear AFP implementation is 90 times quicker,

and heterogeneous AFP speed-up is 11x.



5. Conclusions

The state of the solution is satisfying, with only the

downside of the memory limitation of a single GPU.

The potential to use multiple GPUs to increase both

speed and memory budget is what can be improved

in my implementation.
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